Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Synthesis of Wild Type and Mutant Human Hemoglobins in Saccharomyces cerevisiae

Abstract

We have expressed human αand β-globin cDNA clones from separate, synthetic galactose-regulated hybrid promoters contained on a single plasmid in Saccharomy-ces cerevisiae. Co-expression of the α and β-globin chains in S. cerevisiae results in the assembly of these proteins into soluble tetrameric hemoglobin that accumulates to 3–5 percent of the total cell protein. Endogenously produced heme is incorporated into the tetramer and the protein produced is functionally and structurally indistinguishable from human Ao hemoglobin. This expression system has been used to produce both wild type hemoglobin and a low O2-affinity hemoglobin mutant that has oxygen binding and dissociation characteristics similar to human whole blood. The yeast expression system we describe may be suitable for the production of a recombinant hemoglobin based blood substitute as well as for detailed structure-activity studies of human hemoglobin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Benesch, R. and Benesch, R.E. 1967. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Com. 26: 162–167.

    Article  CAS  PubMed  Google Scholar 

  2. Bleeker, W.K., Plas, van der, J., Feitsma, R.I.J., Agterberg, J., Rigter, G., deVries-van Rossen, A., Panwels, E.K.J. and Bekker, J.C. 1989. In vivo distribution and elimination of hemoglobin modified by intramolecular cross-linking with 2-nor-2-formyl pyridoxal 5′-phosphate. J. Lab. Clin. Med. 113: 151–161.

    CAS  PubMed  Google Scholar 

  3. Lee, R., Atsumi, N., Jacobs, E., Austen, G.W. and Vlahalres, G.J. 1989. Ultrapure, stroma free, polymerized bovine hemoglobin solution: Evaluation of renal toxicity. J. Surg. Res. 47: 407–411.

    Article  CAS  PubMed  Google Scholar 

  4. Snyder, S., Welty, E.U., Walder, R., Williams, L.A. and Walder, J. 1987. HbXL99a: A hemoglobin derivative that is cross-linked between the α subunits is useful as a blood substitute. Proc. Nat. Acad. Sci. USA 84: 7280–7284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bucci, E., Razynska, A., Urbaitis, B. and Fronticelli, C. 1989. Pseudo crosslink of human hemoglobin with mono-(3,5-dibromosalicyl) fuma-rate. J. Biol. Chem. 264: 6191–6195.

    CAS  PubMed  Google Scholar 

  6. Nagai, K. and Thogersen, H.C. 1987. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods in Enzymology 153: 461–581.

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman, S.J., Looker, D.L., Roehrich, J.M., Cozart, P.E., Durfee, S.L., Tedesco, J.L. and Stetler, G.L. 1990. Expression of fully functional tetrameric hemoglobin in Escherichia coli. Proc. Nat. Acad. Sci. USA. In press.

    Google Scholar 

  8. Perutz, M.F., Kilmartin, J.V., Nishikura, K., Fogg, J.H., Butler, P.G. and Rollema, H.S. 1980. Identification of residues contributing to the Bohr effect of human hemoglobin. J. Mol. Biol. 138: 649–670.

    Article  CAS  PubMed  Google Scholar 

  9. Arnone, A. 1972. X-ray diffraction study of binding of 2,3-diphos-phoglycerate to human deoxyhemoglobin. Nature 237: 146–149.

    Article  CAS  PubMed  Google Scholar 

  10. Benesch, R., Benesch, R.E., Renthal, R.D. and Maeda, N. 1972. Affinity labeling of the polyphosphate binding site of hemoglobin. Biochemistry 11: 3576–3582.

    Article  CAS  PubMed  Google Scholar 

  11. Holland, J.P. and Holland, M.J. 1979. The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae. J. Biol. Chem. 254: 9839–9845.

    CAS  PubMed  Google Scholar 

  12. Holland, J.P. and Holland, M.J. 1980. Structural comparison of two nontandemly repeated yeast glyceraldehyde-3-phosphate dehydrogenase genes. J. Biol. Chem. 255: 2596–2605.

    CAS  PubMed  Google Scholar 

  13. Johnston, M. and Davis, R.W. 1984. Sequences that regulate the divergent GAL1-GAL 10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guarente, L., Yocum, R. and Gifford, P. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Nat. Acad. Sci. USA 79: 7410–7414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moo-Penn, W., Wolff, J., Simon, G., Vacek, M., Jue, D. and Johnson, M. 1978. Hemoglobin presbyterian: β108(G10) asparagines→lysine. A hemoglobin variant with low oxygen affinity. FEBS Lett 92: 53–57.

    Article  CAS  PubMed  Google Scholar 

  16. Arfin, S.M. and Bradshaw, R.A. 1988. Cotranslational processing and protein turnover in eukaryotic cells. Biochem. 27: 7979–7984.

    Article  CAS  Google Scholar 

  17. Huang, S., Elliot, R.C., Liu, P.S., Koduri, R.K., Weickmann, J.L., Lee, J.H., Blair, L.C., Ghosh, P., Bradshaw, R.A., Bryan, K.M., Einarson, B., Kendall, R.L., Kolacy, K.H. and Saito, K. 1987. Specificity of cotranslational amino terminal processing of proteins in yeast. Biochem. 26: 8242–8246.

    Article  CAS  Google Scholar 

  18. Tsunasawa, S., Stewart, J.W. and Sherman, F. 1985. Amino terminal processing of mutant forms of yeast iso-1-cytochrome C. The specificities of methionine amino peptidase and acetyltranslerase. J. Biol. Chem. 260: 5382–5391.

    CAS  PubMed  Google Scholar 

  19. Bachmair, A., Finley, D. and Varshavsky, A. 1986. In vivo half-life of a protein is a function of its ammo-terminal residue. 1986. Science 234: 179–186.

    Article  CAS  PubMed  Google Scholar 

  20. Mattoon, J.R., Lancashire, W.E., Sanders, H.K., Carvajal, E., Mala-mud, D.R., Braz, R.C. and Panel, D. 1979. Oxygen and catabolite regulation of hemoprotein biosynthesis in yeast, p. 421–435. In: Biochemical and Clinical Aspects of Oxygen. W. S. Caughey (Ed.). Academic Press, Inc., NY.

    Chapter  Google Scholar 

  21. Keng, T. and Guarente, L. 1987. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc. Nat. Acad. Sci. USA 84: 9113–9117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tueblood, C.E., Wright, R.M. and Poynton, R.O. 1988. Differential regulation of the two genes encoding Saccharomyces cerevisiae cytochrome C oxidase subunit V by heme and the HAP2 and REO1 genes. Mol. Cell. Biol. 8: 4537–4540.

    Article  Google Scholar 

  23. Lowry, C.V. and Zitomer, R.S. 1988. ROX1 encodes a heme-induced repression factor regulating ANB1 and CYC7 of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4651–4658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bunn, H.F. and Forget, B.G. 1986. Hemoglobin: Molecular Genetic and Clinical Aspects. W. B. Saunders Co., Philadelphia, PA.

    Google Scholar 

  25. Valenzuela, P., Medina, A., Rutter, W.J., Ammerer, G. and Hall, B.D. 1982. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298: 347–350.

    Article  CAS  PubMed  Google Scholar 

  26. Wood, C.R., Boss, M.A., Kenten, J.H., Calvert, J.E., Roberts, N.A. and Emtage, J.S. 1985. The synthesis and in vivo assembly of functional antibodies in yeast. Nature 314: 446–449.

    Article  CAS  PubMed  Google Scholar 

  27. Theriault, N.Y., Carter, J.B. and Palaski, S.P. 1988. Optimization of Hgation reaction conditions in gene synthesis. Bio Techniques 6: 470–473.

    CAS  Google Scholar 

  28. Stetler, G.L., Forsyth, C., Gleason, T., Wilson, J. and Thompson, R.C. 1989. Secretion of active, full- and half-length human secretory leukocyte protease inhibitor by Saccharomyces cerevisiae. Bio/Technology 7: 55–60.

    CAS  Google Scholar 

  29. Vandergriff, K.D., Medina, F., Marini, M.A. and Winslow, R.W. 1989. Equilibrium oxygen binding to human hemoglobin cross-linked between the α chains by bis (3,5-dibromosalicyl) fumarate. J. Biol. Chem. 624: 17824–17833.

    Google Scholar 

  30. Hewick, R.M., Hunkapiller, N.W., Hood, L.E. and Dreyer, W.J. 1981. A gas liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256: 7990–7997.

    CAS  PubMed  Google Scholar 

  31. Riggs, A. 1981. Preparation of blood hemoglobins of vertebrates. Methods in Enzymology 76: 5–29.

    Article  CAS  PubMed  Google Scholar 

  32. Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  33. Davis, R.W., Botstein, D. and Roth, J.R. 1980. Advanced Bacterial Genetics: A Manual for Genetic Engineering. Cold Spring Harbor Laboratory, N.Y.

    Google Scholar 

  34. Sherman, F., Fink, G. and Lawrence, C.W. 1979. Methods in Yeast Genetics: A Laboratory Manual. Cold Spring Harbor Laboratory, N.Y.

    Google Scholar 

  35. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagenbach, M., O'Rourke, K., Vitez, L. et al. Synthesis of Wild Type and Mutant Human Hemoglobins in Saccharomyces cerevisiae. Nat Biotechnol 9, 57–61 (1991). https://doi.org/10.1038/nbt0191-57

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0191-57

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing