Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Production of Cystic Fibrosis Transmembrane Conductance Regulator in the Milk of Transgenic Mice

Abstract

Here we describe the production of cystic fibrosis transmembrane conductance regulator (CFTR), the product of the gene associated with cystic fibrosis, in the milk of transgenic mice. Mammary specific expression was achieved by placing the CFTR cDNA under the control of the goat β-casein gene promoter. By fractionation, CFTR was shown to be associated with the membranes that envelop milk fat globules as they are discharged from the apical surface of the mammary epithelia. Since milk fat globules may comprise up to 10% of whole milk, this represents a novel, inexpensive and efficient approach to produce CFTR and possibly other membrane-associated proteins. The availability of large quantities of CFTR could have important implications for the development of new therapies for cystic fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kerem, B.-S., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M. and Tsui, L.-C. 1989. Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080.

    Article  CAS  Google Scholar 

  2. Riordan, J., Rommens, J.M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczack, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M.L., lannuzi, M.C., Collins, F.S. and Tsui, L.-C. 1989. Identifica-tion of the cystic fibrosis gene: cloning and characterization of the complementary DNA. Science 245: 1059–1065.

    Article  Google Scholar 

  3. Rommens, J.M., lannuzi, M.C., Kerem, B.-S., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, R., Cole, J.L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J.R., Tsui, L.-C. and Collins, F.S. 1989. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059–1065.

    Article  CAS  Google Scholar 

  4. Cutting, G.R., Kasch, L.M., Rosenstein, B.J., Zielenski, J., Tsui, L.-C., Antonarkis, S.E. and Kazanian, H.H., Jr 1990. A cluster of cystic fibrosis mutations in the first nucleotide binding fold of the cystic fibrosis conductance regulator protein. Nature 346: 366–369.

    Article  CAS  Google Scholar 

  5. Dean, M., White, M.B., Amos, J., Gerrard, B., Stewart, C., Khaw, K.T. and Leppert, M. 1990. Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61: 863–870.

    Article  CAS  Google Scholar 

  6. Kerem, B.-S., Zielenski, J., Markiewicz, D., Bozon, D., Gazit, E., Yahaf, J., Kennedy, D., Riordan, J.R., Colins, F.S., Rommens, J.R. and Tsui, L.-C. 1990. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc. Natl. Acad. Sci. USA 87: 8447–8451.

    Article  CAS  Google Scholar 

  7. Kobayashi, K., Knowles, M.R., Boucher, R.C., O'Brien, W.E. and Beaudet, A.L. 1990. Benign missense variations in the cystic fibrosis gene. Am. J., Hum. Genet. 47: 611–615.

    CAS  Google Scholar 

  8. White, M.B., Amos, J., Hsu, J.M.C., Gerrard, B., Finn, P. and Dean, M. 1990. A frame-shift mutation in the cystic fibrosis gene. Nature 322: 467–470.

    Google Scholar 

  9. Devoto, M., Ronchetto, P., Fanen, P., Telleria Orriols, J.J., Romeo, G., Goossens, M., Ferrari, M., Magnani, C., Seva, M. and Cremonesi, L. 1991. Screening for non-delta F508 mutations in five exons of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in Italy. Am. J. Hum. Genet. 48: 1127–1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zielenski, J., Bozon, D., Kerem, B., Markiewicz, D., Durie, P., Rom-mens, J.M. and Tsui, L.-C. 1991. Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10: 229–235.

    Article  CAS  Google Scholar 

  11. Gregory, R.J., Cheng, S.H., Rich, D.P., Marshall, J., Paul, S., Hehir, K., Ostedgaard, L., Klinger, K.W., Welsh, M.J. and Smith, A.E. 1990. Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347: 382–386.

    Article  CAS  Google Scholar 

  12. Rich, D.P., Anderson, M.P., Gregory, R.J., Cheng, S.H., Paul, S., Jefferson, D.M., McCann, J.D., Klinger, K.W., Smith, A.E. and Welsh, M.J. 1990. Expression of the cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347: 358–363.

    Article  CAS  Google Scholar 

  13. Drumm, M.L., Pope, H.A., Cliff, W.H., Rommens, J.M., Marvin, S.A., Tsui, L.-C., Collins, F.S., Frizzel, R.A. and Wilson, J.M. 1990. Correction of cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62: 1227–1233.

    Article  CAS  Google Scholar 

  14. Anderson, M.P., Gregory, R.J., Thompson, S., Souza, D.W., Paul, S., Mulligan, R.C., Smith, A.E. and Welsh, M.J. 1991. Demonstration the CFTR is a chloride channel by alteration of its anion selectivity. Science 253: 202–205.

    Article  CAS  Google Scholar 

  15. Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., White, G.A., O'Riordan, C.R. and Smith, A.E. 1990. Defective intracellular transport and processing is the molecular basis of most cystic fibrosis. Cell 63: 827–834.

    Article  CAS  Google Scholar 

  16. Cheng, S.H., Rich, D.P., Marshall, J., Gregory, R.J., Welsh, M.J. and Smith, A.E. 1991. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66: 1027–1036.

    Article  CAS  Google Scholar 

  17. Gregory, R.J., Rich, D.P., Cheng, S.H., Souza, D.W., Paul, S., Manavalan, P., Anderson, M.P., Welsh, M.J. and Smith, A.E. 1991. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol. Cell. Biol. 11: 3886–3893.

    Article  CAS  Google Scholar 

  18. Rich, D.P., Gregory, R.J., Anderson, M.P., Manavalan, P., Smith, A.E. and Welsh, M.J. 1991. Effect of deleting the R domain on CFTR-generated chloride channels. Science 235: 205–207.

    Article  Google Scholar 

  19. Anderson, M.P., Rich, D.P., Gregory, R.J., Smith, A.E. and Welsh, M.J. 1991. Generation of cAMP activated chloride currents by expres-sion of CFTR. Science 251: 679–682.

    Article  CAS  Google Scholar 

  20. Kartner, N., Hanrahan, J.W., Jensen, T.J., Naismith, A.L., Sun, S., Ackerley, C.A., Reyes, E.F., Tsui, L.C., Rommens, J.M., Bear, C.E. and Riordan, J.R. 1991. Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produce a regulated anion conduc-tance. Cell 64: 681–692.

    Article  CAS  Google Scholar 

  21. Tabcharani, J.A., Chang, X.B., Riordan, J.R. and Hanrahan, J.W. 1991. Phosphorylation-regulated CI channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352: 628–631.

    Article  CAS  Google Scholar 

  22. Anderson, M.P., Herbert, B.A., Rich, D.P., Gregory, R.J., Smith, A.E. and Welsh, M.J. 1991. Nucleotide triphosphates regulate the CFTR chloride channel. Cell In press.

  23. Patton, S. and Keenan, T.W. 1975. The milk fat globule membrane. Biochim. Biophys. Acta 415: 273–309.

    Article  CAS  Google Scholar 

  24. Keenan, T.W., Franke, W.W., Mather, J.H. and Morre, D.J. 1978. Endomembrane composition and function in milk formation, p. 401–436. In: Lactation. B. A. Larson (Ed.). Academic Press, Inc., New York.

    Google Scholar 

  25. Sasaki, M., Eigel, W.N. and Keenan, T.W. 1978. Lactose and major milk proteins are present in secretory vesicles from mammary gland. Proc. Natl. Acad. Sci. USA 75: 5020–5024.

    Article  CAS  Google Scholar 

  26. Denman, J., Hayes, M., O'Day, C., Edmunds, T., Bartlett, C., Hirani, S., Ebert, K.M., Gordon, K. and McPherson, J.M. 1991. Transgenic expression of a variant of human tissue-type plasminogen activator in goat's milk. Purification and characterization of the recombinant enzyme. Bio/Technology 9: 839–843.

    CAS  PubMed  Google Scholar 

  27. Ebert, K.M., Selgrath, J.P., DiTullio, P., Denman, J., Memom, M.A., Schindler, J.E., Monastersky, G.M., Vitale, J. and Gordon, K. 1991. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk. Generation of transgenic goats and analysis of expression. Bio/Technology 9: 835–838.

    CAS  PubMed  Google Scholar 

  28. Imam, A., Laurence, D.J.R. and Neville, A.M. 1981. Isolation and characterization of a major glycoprotein from milk fat globule membrane of human breast milk. Biochem. J. 193: 47–54.

    Article  CAS  Google Scholar 

  29. Patton, S. and Huston, G.E. 1986. A method for isolation of milk fat globules. Lipids 21: 170–174.

    Article  CAS  Google Scholar 

  30. Yoshimura, M., Banerjee, M.R. and Oka, T. 1986. Nucleotide sequence of a cDNA encoding mouse beta casein. Nucl. Acids Res. 14: 8224.

    Article  CAS  Google Scholar 

  31. Cleveland, D.W., Fisher, S.G., Kirschner, M.W. and Laemmli, U.K. 1977. Peptide mapping by limited proteolysis in sodium dodecyl sulphate by gel electrophoresis. J. Biol. Chem. 25: 1102–1106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiTullio, P., Cheng, S., Marshall, J. et al. Production of Cystic Fibrosis Transmembrane Conductance Regulator in the Milk of Transgenic Mice. Nat Biotechnol 10, 74–77 (1992). https://doi.org/10.1038/nbt0192-74

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0192-74

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing