Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Antibody Assisted Protein Refolding

Abstract

In this study, we provide an initial demonstration of the use of monoclonal antibodies (MAbs) to enhance the yield of native protein during protein refolding. The presence of an anti-native MAb was found to enhance the refolding of reduced S-Protein (a fragment of Ribonuclease A) by as much as 360 percent over controls. This increase in recovered enzymatic activity was directly related to the MAb concentration and was saturable with excess antibody, suggesting that the antibodies are assisting through direct interaction at specific epitopes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli . Biochem. J. 240: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Crieghton, T.E. 1974. Renaturation of the reduced bovine pancreatic trypsin inhibitor. J. Mol. Biol. 87: 563–602.

    Article  Google Scholar 

  3. Creighton, T.E. 1977. Kinetics of refolding of reduced ribonuclease. J. Mol. Biol. 113: 329–341.

    Article  CAS  PubMed  Google Scholar 

  4. Schein, C.H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  5. Givol, D., Delorenzo, F., Goldberger, R.F. and Anfinsen, C.B. 1965. Disulfide interchange and 3-dimensional structure of proteins. Proc. Natl. Acad. Sci., USA 53: 676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richards, F.M. and Vithayathil, P.J. 1959. The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J. Biol. Chem. 234: 1459–65.

    CAS  PubMed  Google Scholar 

  7. Anfinsen, C.B., Haber, E., Sela, M. and White, F.H., Jr. 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. 47: 1309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haber, E. and Anfinsen, C.A. 1961. Regeneration of enzyme activity by air oxidation of reduced subtilisin-modified ribonuclease. J. Biol. Chem. 236: 422–6.

    CAS  PubMed  Google Scholar 

  9. Kato, I. and Anfinsen, C.A. 1969. On the stabilization of ribonuclease S-Protein by ribonuclease S-Peptide. J. Biol. Chem. 244: 1004–7.

    CAS  PubMed  Google Scholar 

  10. Flecher, P. 1989. A new and general procedure for refolding mutant Bowman-Birk type proteinase inhibitors on trypsin-sepharose as a matrix with complementary structure.FEBS Letters 252: 153–157.

    Article  Google Scholar 

  11. Chavez, L.G. and Benjamin, D.C. 1978. Antibody as an immunological probe for studying the refolding of bovine serum albumin. J. Biol. Chem. 253: 8081–8086.

    CAS  PubMed  Google Scholar 

  12. Blond, S. and Goldberg, M. 1987. Partly native epitopes are already present on early intermediates in the folding of tryptophan synthase. Proc. Natl. Acad. Sci. 84: 1147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Creighton, T.E., 1984. Proteins: Structures and Molecular Principles., p. 327. W. H. Freeman, New York.

  14. Saxena, V.P. and Wetlaufer, D.B. 1970. Formation of three-dimensional structure in proteins: I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry 9: 5015–23.

    Article  CAS  PubMed  Google Scholar 

  15. Hantgan, R.R., Hammes, G.G. and Scheraga, H.A. 1974. Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemistry 13: 3421–3431.

    Article  CAS  PubMed  Google Scholar 

  16. Chavez, L.G., Jr. and Scheraga, H.A. 1980. Folding of ribonuclease, S-Protein and Des(121–124)-ribonuclease during glutathione oxidation of the reduced proteins. Biochemistry 19: 996–1004.

    Article  CAS  PubMed  Google Scholar 

  17. Brems, D.N. 1988. Solubility of different folding conformers of bovine growth hormone. Biochemistry 27: 4541–4546.

    Article  CAS  Google Scholar 

  18. Chavez, L.G. and Scheraga, H.A. 1979. Location of the antigenic determinants of bovine pancreatic ribonuclease. Biochemistry 18: 4386–4395.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed, A.K., Schaffer, S.W. and Wetlaufer, D.B. 1975. Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers. J. Biol. Chem. 250: 8477–8482.

    CAS  PubMed  Google Scholar 

  20. Schaffer, S.W., Ahmed, A.K. and Wetlaufer, D.B. 1975. Salt effects in the glutathione-facilitated reactivation of reduced bovine pancreatic ribonuclease. J. Biol. Chem. 250: 8483–8486.

    CAS  PubMed  Google Scholar 

  21. Morel, G.A., Yarmush, D.M., Colton, C.K., Benjamin, D.C. and Yarmush, M.L. 1988. Monoclonal antibodies to bovine serum albumin: affinity and specificity determination. Mol. Immunol. 25: 7–15.

    Article  CAS  PubMed  Google Scholar 

  22. Markwell, M.A.K. and Fox, C.F. 1978. Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3α,6α-diphenylglycoluril. Biochemistry 17: 4807–4817.

    Article  CAS  PubMed  Google Scholar 

  23. Fraker, P.J. and Speck, J.C. 1978. Protein and cell membrane iodinations with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3α,6α,-diphenylglycoluril. Biochem. Biophys. Res. Com. 80: 849–857.

    Article  CAS  PubMed  Google Scholar 

  24. Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77.

    Article  CAS  PubMed  Google Scholar 

  25. Riddles, P.W., Blakeley, R.L. and Zerner, B. 1983. Reassessment of Ellman's reagent. Meth. Enzymol. 91: 49–61.

    Article  CAS  Google Scholar 

  26. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–250.

    Article  CAS  PubMed  Google Scholar 

  27. Chaplinski, T. and Webster, D.A. 1973. Ribonuclease: A spectrophotometric assay using acridine orange-RNA complex. Anal. Biochem. 54: 395–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, J., Yarmush, M. Antibody Assisted Protein Refolding. Nat Biotechnol 10, 86–91 (1992). https://doi.org/10.1038/nbt0192-86

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0192-86

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing