Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo bypass of hemophilia A coagulation defect by Factor XIIa implant

Abstract

Hemophilia A and B coagulation defects, which are caused by deficiencies of Factor VIII and Factor IX, respectively, can be bypassed by administration of recombinant Factor VIIa. However, the short half-life of recombinant Factor VIIa in vivo negates its routine clinical use. We report here an in vivo method for the continuous generation of Factor VIIa. The method depends on the implantation of a porous chamber that contains Factor Xa or XIIa, and continuously generates Factor VIIa bypass activity from the subject's own Factor VII, which enters the chamber by diffusion. Once inside, the Factor VII is cleaved to Factor VIIa by the immobilized Factor Xa or XIIa. The newly created Factor VIIa diffuses out of the chamber and back into the circulation, where it can bypass the deficient Factors VIII or IX, and enable coagulation to occur. In vitro, this method generates sufficient Factor VIIa to substantially correct Factor VIII-deficient plasma when assessed by the classical aPTT coagulation assay. In vivo, a Factor XIIa peritoneal implant generates bypass activity for up to one month when tested in rhesus monkeys. Implantation of such a chamber in a patient with hemophilia A or B could eventually provide a viable alternative to replacement therapies using exogenous coagulation factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of dual-compartment chamber and the experimental design for generating Factor VIIa.
Figure 2: Generation of bypass activity from purified Factor VII.
Figure 3: Generation of bypass activity in Factor VIII-deficient plasma.
Figure 4: Time-dependent bypass activity of Factor XIIa implant, in vivo.

Similar content being viewed by others

References

  1. Bloom, A.L. Progress in clinical management of haemophilia. Thromb. Haemostasis 66, 166–177 ( 1991).

    Article  CAS  Google Scholar 

  2. Rosendaal, F.R., Smit, C. & Briet, E. Hemophilia treatment in historical perspective: a review of medical and social developments. Ann. Hematol. 62, 5– 15 (1991).

    Article  CAS  Google Scholar 

  3. Thompson, A.R. Molecular biology of the Hemophilias. Prog. Hemostasis Thromb. 10, 175–214 ( 1991).

    CAS  Google Scholar 

  4. Bloom, A.L. Management of factor VIII inhibitors: evolution and current status. Haemostasis 22, 268–275 (1992).

    CAS  PubMed  Google Scholar 

  5. Sultan, Y. & Algiman, M. Treatment of factor VIII inhibitors . Blood Coag. Fibrinolysis 1, 193– 199 (1990).

    CAS  Google Scholar 

  6. Nilsson, I.M. The management of Hemophilia patients with inhibitors. Transfusion Med. Rev. 6, 285–293 ( 1992).

    Article  CAS  Google Scholar 

  7. Hedner, U. & Glazer, S. Management of Hemophilia patients with inhibitors. Hematol. Oncol. Clin. North Am. 6, 1035–1046 (1992).

    Article  CAS  Google Scholar 

  8. Kasper, C.K. Complications of Hemophilia A treatment: factor VIII inhibitors. Ann. N.Y. Acad. Sci. 614, 97–105 (1991)

    Article  CAS  Google Scholar 

  9. Abildgaard, U., Sandset, P.M., Andersson, T.R., Odegaard, O.R. & Rosen, S. The inhibitors of factor VII in plasma measured with a sensitive chromogenic substrate assay: comparison with antithrombin, protein C and heparin cofactor II in clinical material. Folia Haematol. Int. Mag. Klin. Morphol. Blutforsch. 115, 274– 277 (1988).

    CAS  PubMed  Google Scholar 

  10. Kelly, P. & Penner, J.A. Antihemophilic factor inhibitors. Management with prothrombin complex concentrates. J.A.M.A. 236, 2061–2064 (1976).

    Article  CAS  Google Scholar 

  11. Kurczynski, E.M. & Penner, J.A. Activated prothrombin concentrate for patients with factor VIII inhibitors. N. Engl. J. Med. 291, 164–167 ( 1974).

    Article  CAS  Google Scholar 

  12. Lusher, J.M. et al. Efficacy of prothrmbin–complex concentrates in Hemophiliacs with antibodies to factor VIII: a multicenter therapeutic trial. N. Engl. J. Med. 303, 421–425 (1980).

    Article  CAS  Google Scholar 

  13. Giles, A.R. By what mechanisms could prothrombin complex concentrates promote factor VIII activity in vivo? Tranfusion Med. Rev. 1, 131–137 (1987).

    Article  CAS  Google Scholar 

  14. Hedner, U. & Kisiel, W. Use of human factor VIIa in the treatment of two Hemophilia A patients with high–titer inhibitors. J. Clin. Invest. 71, 1836–1841 (1983).

    Article  CAS  Google Scholar 

  15. Hedner, U., Bjoern, S., Bernvil, S.S., Tengborn, L. & Stigendahl, L. Clinical experience with human plasma-derived factor VIIa in patients with Hemophilia A & high titer inhibitors. Haemostasis 19, 335– 343 (1989).

    CAS  PubMed  Google Scholar 

  16. Bell, B.A., Birch, K. & Glazer, S. Experience with recombinant factor VIIa in an infant Hemophiliac with inhibitors to Factor VIII:C undergoing emergency central line placement. A case report. Am. J. Pediatr. Hematol. Oncol. 15, 77–79 (1993).

    Article  CAS  Google Scholar 

  17. Hedner, U. Experiences with recombinant factor VIIa in Hemophiliacs. Curr. Stud. Hematol. Blood Transf. 58, 63– 68 (1991).

    Article  Google Scholar 

  18. Schulman, S. A therapeutic alternative for Hemophiliacs with inhibitors. Acta Paediatr. 81, 564–565 ( 1992).

    Article  CAS  Google Scholar 

  19. Macik, B.G., Hohneker, J., Roberts, H.R. & Griffin, A.M. Use of recombinant activated factor VII for treatment of a retropharyngeal hemorrhage in a hemophilic patient with a high titer inhibitor. Am. J. Hemotol. 32, 232–234 (1989).

    Article  CAS  Google Scholar 

  20. Schmidt, M.L., et al. Prolonged recombinant activated factor VII (rFVIIa) treatment for severe bleeding in a factor IX-deficient patient with inhibitor. Br. J. Haemotol. 78, 460–463 (1991).

    Article  CAS  Google Scholar 

  21. Brinkhous, K.M., Hedner, U., Sarris, J.B., Diness, V. & Read, M.S. Effect of recombinant factor VIIa on the hemostatic defect in dogs with hemophilia A, Hemophilia B, & von Willibrand disease. Proc. Natl. Acad. Sci. USA 86, 1382– 1386 (1989).

    Article  CAS  Google Scholar 

  22. Macik, B.G. et al. Safety and initial clinical efficacy of three dose levels of recombinant activated factor VII (rFVIIa): results of a phase I study. Blood, Coagul. Fibrinolysis 4, 521–527 (1993).

    Article  CAS  Google Scholar 

  23. Telgt, D.S., Macik, B.G., McCord, D.M., Monroe, D.M. & Roberts, H.R. Mechanisms by which recombinant factor VIIa shortens the aPTT: activation of Factor X in the absence of tissue factor. Thromb. Res. 56, 603 ( 1989).

  24. Pollock, A. & Lewis, M.J. Letter: Factor VIII inhibitor bypassing activity. Lancet 2, 43 (1976).

  25. Thomsen, M.K. et al. Pharmacokinetics of recombinant factor VIIa in the rat: a comparison of bio-, immuno-, and isotope assays.” Thromb. Haemos. 70, 458–464 (1993).

    CAS  Google Scholar 

  26. Hedner, U., Glazer, S. & Falch, J. Recombinant activated factor VII in the treatment of bleeding episodes in patients with inherited and acquired bleeding disorders. Transfus.Med. Rev. 7, 78–83 (1993).

    Article  CAS  Google Scholar 

  27. Osterud, B. Factor VII and haemostasis (see comments). Blood Coagul. Fibrinolysis. 1, 749–750 ( 1990).

    Google Scholar 

  28. Kisiel, W., Fujikawa, K. & Davie, E.W. Activation of bovine Factor VII (proconvertin) by Factor XIIa (activated Hageman Factor). Biochemistry 16, 4189–4194 (1977).

    Article  CAS  Google Scholar 

  29. Broze, G.J. & Majerus, P.W. Purification and properties of human coagulation Factor VII. J. Biol. Chem. 255, 1242–1247 (1980).

    CAS  PubMed  Google Scholar 

  30. Wildgoose, P., Nemerson, Y., Nielsen, F.E., Glazer, S. & Hedner, U. Measurement of basal levels of factor VIIa in Hemophilia A and B patients. Blood 80, 3255–3256 (1992).

    Google Scholar 

  31. Edgington, T.S., Ruf, W., Rehemtulla, A. & Mackman, N. The molecular biology of initiation of coagulation by tissue factor. Curr. Stud. Hematol. Blood Transfus. 58, 15–21 (1991).

    Article  CAS  Google Scholar 

  32. Hedner, U. Factor VIIa in the treatment of haemophilia. Blood Coag. Fibrinolysis 1, 307–317 ( 1990).

    Article  CAS  Google Scholar 

  33. Giles, A.R., Mann, K.G. & Nesheim, M.E. A combination of factor Xa and phosphatidylcholine–phosphatidylserine vesicles bypasses factor VIII in vivo. Br. J. Haematol. 69, 491–497 (1988).

    Article  CAS  Google Scholar 

  34. Rapaport, S.I. Inhibition of factor VIIa/tissue factor-induced blood coagulation: with particular emphasis upon a factor Xa-dependent inhibitory mechanism. Blood 13, 359–365 ( 1989).

    Google Scholar 

  35. Warr, T.A., Rao, L.V. & Rapaport, S.I. Human plasma extrinsic pathway inhibitor activity: II. Plasma levels in disseminated intravascular coagulation and hepatocellular disease. Blood 74, 994– 998 (1989).

    CAS  PubMed  Google Scholar 

  36. Warr, T.A., Warn-Cramer, B.J., Rao, L.V. & Rapoport, S.I. Human plasma extrinsic pathway inhibitor activity: I. Standardization of assay and evaluation of physiologic variables. Blood 74, 201–206 (1989).

    CAS  PubMed  Google Scholar 

  37. Warn-Cramer, B.J., Maki, S.L., Zivelin, A. & Rapoport, S.I. Partial purification and characterization of extrinsic pathway inhibitor (the factor Xa-dependent plasma inhibitor of factor VIIa/tissue factor) Thromb. Res. 48, 11–22 (1987).

    Article  CAS  Google Scholar 

  38. Roegoeci, E., Zaimi, O., Chindemi, P.A. & Charlwood, P.A. Absorption of plasma proteins from peritoneal cavity of normal rats. Am. J. Physiol. 256, E447–452 (1989).

    Google Scholar 

  39. Carpenter, C.B. & Lazarus, J.M. Dialysis and transplantation in the treatment of renal failure. In Harrison's principles of internal medicine, Edn. 13 (eds Isselbacher, K.J. et al.) 1281–1292 (McGraw-Hill, New York, NY; 1994).

    Google Scholar 

  40. Zaleznik, D.F. & Kasper, D.L. Intraabdominal infections and abcesses. In Harrison's principles of internal medicine , Edn. 13 (eds Isselbacher, K.J. et al.) 526– 534 (McGraw-Hill, New York, NY; 1994).

    Google Scholar 

  41. Lanza, R.P., Sullivan, S.J. & Chick, W.L. Perspectives in diabetes. Islet transplantation with immunoisolation. Diabetes 41, 1503– 1510 (1992).

    Article  CAS  Google Scholar 

  42. Sullivan, S.J. et al. (1992). Islet transplantation using a immunoprotective membrane in dogs that had undergone a pancreatectomy. ASAIO J. 38, M450–453 ( 1992).

    Article  CAS  Google Scholar 

  43. Soon-Shiong, P. et al. Insulin dependence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343, 950– 951 (1994).

    Article  CAS  Google Scholar 

  44. Handin, R.I. Disorders of coagulation and thrombosis. In Harrison's principles of internal medicine, Edn. 13 (eds Isselbacher, K.J. et al.) 1804 –1810 (McGraw-Hill, New York, NY; 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey B. Pollard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ton-That, T., Doron, D., Pollard, B. et al. In vivo bypass of hemophilia A coagulation defect by Factor XIIa implant . Nat Biotechnol 18, 289–295 (2000). https://doi.org/10.1038/73727

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/73727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing