Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

The Functional Expression of Antibody Fv Fragments in Ischhuchia coli: Improved Vectors and a Generally Applicable Purification Technique

Abstract

We have previously demonstrated that the expression of fully functional Fv and Fab fragments in E. coli is possible by the simultaneous secretion of both chains to the periplasm. To increase production levels and facilitate engineering and random mutagenesis, we improved our previous vectors by introducing a resident represser gene and a filamentous phage origin. We also developed a new purification strategy based on immobilized metal ion chromatography, with which a single-chain Fv fragment can be purified to homogeneity in a single step. We investigated the most efficient tail constructions and found that only a minimal structural change of three additional C-terminal amino acids is necessary. This modification has no deleterious effect on in vivo transport and folding or antigen affinity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Skerra, A. and Plückthun, A. 1988. Assembly of a functional immu-noglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  CAS  Google Scholar 

  2. Plückthun, A. and Skerra, A. 1989. Expression of functional antibody Fv and Fab fragments in E. coli. Meth. Enzymol. 178: 497–515.

    Article  Google Scholar 

  3. Ward, E.S., Güssow, D., Griffiths, A.D., Jones, P.T. and Winter, G. 1989. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341: 544–546.

    Article  CAS  Google Scholar 

  4. Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting-Mees, M., Burton, D.R., Benkovic, S.J. and Lerner, R.A. 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: 1275–1281.

    Article  CAS  Google Scholar 

  5. Potter, M. 1977. Antigen-binding myeloma proteins of mice. Adv. Immunol. 25: 141–211.

    Article  CAS  Google Scholar 

  6. Perlmutter, R.M., Crews, S.T., Douglas, R., Sorensen, G., Johnson, N., Nivera, N., Gearhart, P.J. and Hood, L. 1984. The generation of diversity in phosphorylcholine-binding antibodies. Adv. Immunol. 35: 1–37.

    Article  CAS  Google Scholar 

  7. Leon, M.A. and Young, N.M. 1971. Specificity for phosphorylcholine of six murine myeloma proteins reactive with Pneumococcus C polysac-charide and β-lipoprotein. Biochemistry 10: 1424–1429.

    Article  CAS  Google Scholar 

  8. Young, N.M. and Leon, M.A. 1977. The binding of analogs of phosphorylcholine by the murine myeloma proteins McPC603, MOPC167 and S107. Immunochemistry 14: 757–761.

    Article  CAS  Google Scholar 

  9. Metzger, H., Chesebro, B., Hadler, N.M., Lee, J. and Otchin, N. 1971. Modification of immunoglobulin combining sites, p. 253–267. In: Progress in Immunology: Proceedings of the 1st Congress of Immunology. Amos, B. (Ed.). Academic Press, New York.

    Chapter  Google Scholar 

  10. Segal, D.M., Padlan, E.A., Cohen, G.H., Rudikoff, S., Potter, M. and Davies, D.R. 1974. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc. Nat. Acad. Sci. USA 71: 4298–4302.

    Article  CAS  Google Scholar 

  11. Satow, Y., Cohen, G.H., Padlan, E.A. and Davis, D.R. 1986. Phosphocholine binding immunoglobulin Fab McPC603. J. Mol. Biol. 90: 593–604.

    Article  Google Scholar 

  12. Glockshuber, R., Malia, M., Pfitzinger, I. and Pluckthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv fragments. Biochemistry 29: 1362–1367.

    Article  CAS  Google Scholar 

  13. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.M., Lee, T., Pope, S.H., Riordan, G.S. and Whitlow, M. 1988. Single-chain antigen-binding proteins. Science 242: 423–426.

    Article  CAS  Google Scholar 

  14. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R. and Oppermann, H. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Nat. Acad. Sci. USA 85: 5879–5883.

    Article  CAS  Google Scholar 

  15. Smith, M.C., Furman, T.C. and Pidgeon, C. 1987. Immobilized iminodiacetic acid metal peptide complexes. Identification of chelating peptide purification handles for recombinant proteins, Inorg. Chem. 26: 1965–1969.

    Article  CAS  Google Scholar 

  16. Smith, M.C., Furman, T.C., Ingolia, T.D. and Pidgeon, C. 1988. Chelating peptide-immobilized metal ion affinity chromatography. J. Biol. Chem. 263: 7211–7215.

    CAS  PubMed  Google Scholar 

  17. Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. and Stüber, D. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6: 1321–1325.

    CAS  Google Scholar 

  18. Hochuli, E., Döbeli, H. and Schacher, A. 1987. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatography 411: 177–184.

    Article  CAS  Google Scholar 

  19. Ghrayeb, J., Kimura, H., Takahara, M., Hsiung, H., Masui, Y. and Inouye, M. 1984. Secretion cloning vectors in Escherichia coli. EMBO J. 3: 2437–2442.

    Article  CAS  Google Scholar 

  20. Schoner, B.E., Belagaje, R.M. and Schoner, R.G. 1990. Enhanced translational efficiency with two-cistron expression system. Methods Enzymol. 185: 94–114.

    Article  CAS  Google Scholar 

  21. Nakamura, K., Pirtle, R.M., Pirtle, I.L., Takeishi, K. and Inouye, M. 1980. Messenger ribonucleic acid of the lipoprotein of the Escherichia coli outer membrane. J. Biol. Chem. 255: 210–216.

    CAS  PubMed  Google Scholar 

  22. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

  23. Geisselsoder, J., Witney, F. and Yuckenberg, P. 1987. Efficient site-directed in vitro mutagenesis. Biotechniques 5: 786–791.

    CAS  Google Scholar 

  24. Kunkel, T.A., Roberts, J.D. and Zakour, R.A. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154: 367–382.

    Article  CAS  Google Scholar 

  25. Sassenfeld, H.M. and Brewer, S.J. 1984. A polypeptide fusion designed for the purification of recombinant proteins. Bio/Technology 2: 76–81.

    CAS  Google Scholar 

  26. von Heijne, G. 1989. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341: 456–458.

    Article  CAS  Google Scholar 

  27. Summers, R.G., Harris, C.R. and Knowles, J.R. 1989. A conservative amino acid substitution, arginine for lysine, abolishes export of a hybrid protein in Escherichia coli. J. Biol. Chem. 264: 20082–20088.

    CAS  PubMed  Google Scholar 

  28. Sassenfeld, H.M. 1990. Engineering proteins for purification. Trends Biotechnol. 888–93.

    Article  Google Scholar 

  29. Ljungquist, C., Breitholtz, A., Brink-Nilsson, H., Moks, T., Uhlén, M. and Nilsson, B. 1989. Immobilization and affinity purification of recombinant proteins using histidine peptide fusions. Eur. J. Biochem. 186: 563–569.

    Article  CAS  Google Scholar 

  30. Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Article  CAS  Google Scholar 

  31. Vieira, J. and Messing, J. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153: 3–11.

    Article  CAS  Google Scholar 

  32. Takagi, H., Morinaga, Y., Tsuchiya, M., Ikemura, H. and Inouye, M. 1988. Control of folding of proteins secreted by a high expression secretion vector, pIN-III-ompA: a 16-fold increase in production of active subtilisin E in Escherichia coli. Bio/Technology 6: 948–950.

    CAS  Google Scholar 

  33. Stark, M.J.R. 1987. Multicopy expression vectors carrying the lac represser gene for regulated high-level expression of genes in Escherichia coli. Gene 51: 255–267.

    Article  CAS  Google Scholar 

  34. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  35. Beck, E. and Zink, B. 1981. Nucleotide sequence and genome organisation of filamentous bacteriophages f1 and fd. Gene 16: 35–58.

    Article  CAS  Google Scholar 

  36. Chesebro, B. and Metzger, H. 1972. Affinity labeling of a phosphorylcholine binding mouse myeloma protein. Biochemistry 11: 766–771.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skerra, A., Pfitzinger, I. & Plückthun, A. The Functional Expression of Antibody Fv Fragments in Ischhuchia coli: Improved Vectors and a Generally Applicable Purification Technique. Nat Biotechnol 9, 273–278 (1991). https://doi.org/10.1038/nbt0391-273

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0391-273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing