Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Continuous Regeneration of NAD(H) Covalently Bound to a Cysteine Genetically Engineered into Glucose Dehydrogenase

Abstract

We introduced a cysteine residue on the surface of glucose dehydrogenase from Bacillus subtilis using site-directed muta-genesis. To this mutant, an NAD-analogue was covalently attached by a disulphide bridge so that it was active intramolecularly. The glucose dehydrogenase-cys44-NAD complex, which contained one reactive NAD molecule per subunit of glucose dehydrogenase, was operated together with lactate dehydrogenase in a coupled enzymatic regeneration of NAD(H) in a hollow fiber reactor. L-lactate and gluconic acid were continuously produced from pyruvate and D-glucose, respectively, with a turnover number of 45 cycles per minute for each NAD molecule. The total turnover per coenzyme was 135,000 for the first 2.5 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Månsson, M.-O. and Mosbach, K. 1987. Immobilized pyridine nucleotide coenzymes, p. 217–273. In: Pyridine Nucleotide Coenzymes. Dolphin, D., Poulson, R., and Avramovic, O. (Eds.). John Wiley & Sons, NY.

    Google Scholar 

  2. Riva, S., Carrea, G., Veronese, F.M. and Bückmann, A.F. 1986. Effect of coupling site and nature of the polymer on the coenzymatic properties of water-soluble macromolecular NAD derivatives with selected dehydrogenase enzymes. Enzyme Microb. Technol. 8: 556–560.

    Article  CAS  Google Scholar 

  3. Mosbach, K. 1978. Immobilized coenzymes in general ligand affinity chromatography and their use as active coenzymes, 205–278. In: Advances in Enzymology. Meister, A. (Ed.), John Wiley & Sons, New York.

    Google Scholar 

  4. Månsson, M.-O., Larsson, P.-O. and Mosbach, K. 1978. Covalent binding of an NAD analogue to liver alcohol dehydrogenase resulting in an enzyme-coenzyme complex not requiring exogenous coenzyme for activity. Eur. J. Biochem. 86: 455–463.

    Article  Google Scholar 

  5. Månsson, M.-O., Larsson, P.-O. and Mosbach, K. 1979. Recycling by a second enzyme of NAD covalently bound to alcohol dehydrogenase. FEBS Lett. 98: 309–313.

    Article  Google Scholar 

  6. Kovar, J., Simek, K., Kucera, I. and Matyska, L. 1984. Steady-state kinetics of horse liver alcohol dehydrogenase with a covalently bound coenzyme analogue. Eur. J. Biochem. 139: 585–591.

    Article  CAS  Google Scholar 

  7. Nakamura, A., Urabe, I. and Okada, H. 1986. Anchimeric assistance in the intramolecular reaction of glucose-dehydrogenase-polyethylene glycol NAD conjugate. J. Biol. Chem. 261: 16792–16794.

    CAS  PubMed  Google Scholar 

  8. Lampel, K.A., Uratani, B., Chaudhry, G.R., Ramaley, R.F. and Rudikoff, S. 1986. Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J. Bacteriol. 166: 238–243.

    Article  CAS  Google Scholar 

  9. Deetz, J.S. and Rozzell, J.D. 1988. Enzyme-catalysed reactions in non-aqueous media. Trends Biotechnol. 6: 15–19.

    Article  CAS  Google Scholar 

  10. Kula, M.-R. and Wandrey, C. 1987. Continuous enzymatic transformation in an enzyme-membrane reactor with simultaneous NADH regeneration. Methods in Enzymol. 136: 9–21.

    Article  CAS  Google Scholar 

  11. Howaldt, M., Gottlob, A., Kulbe, K.D. and Chmiel, H. 1988. Simultaneous conversion of glucose/fructose mixtures in a membrane reactor. Ann. N. Y. Acad. Sci. 542: 400–405.

    Article  CAS  Google Scholar 

  12. Nakamura, A., Minami, H., Urabe, I. and Okada, H. 1988. Properties of glucose-dehydrogenase-poly(ethylene glycol)-NAD conjugate as an NADH-regeneration unit in enzyme reactors. Ferment. Technol. 66: 267–272.

    Article  CAS  Google Scholar 

  13. Holbrook, S.R., Muskal, M. and Kim, S.-H. 1990. Predicting surface exposure of amino acids from protein sequence. Protein Engineering 3: 659–665.

    Article  CAS  Google Scholar 

  14. Chenault, H.K. and Whitesides, G.M. 1987. Regeneration of nicoti-namide cofactors for use in organic synthesis. Applied Biochem. Biotechnol. 14: 147–197.

    Article  CAS  Google Scholar 

  15. Ishaque, A., Milhausen, M. and Levy, R. 1974. On the absence of cysteine in glucose 6-phosphate dehydrogenase from Leuconostoc mesmteroides. Biochem. Biophys. Res. Comm. 59: 894–901.

    Article  CAS  Google Scholar 

  16. Lyons, A., King, D.J., Owens, R.J., Yarranton, G.T., Millican, A., Whittle, N.R. and Adair, J.R. 1990. Site-specific attachment to recombinant antibodies via introduced surface cysteine residues. Protein Engineering 3: 703–708.

    Article  CAS  Google Scholar 

  17. Persson, M., Bergstrand, M.G., Bülow, L. and Mosbach, K. 1988. Enzyme purification by genetically attached polycysteine and polyphe-nylalanine affinity tails. Anal. Biochem. 172: 330–337.

    Article  CAS  Google Scholar 

  18. Makino, Y., Negoro, S., Urabe, I. and Okada, H. 1989. Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3. J. Biol. Chem. 264: 6381–6385.

    CAS  PubMed  Google Scholar 

  19. Kulbe, K.D., Schwab, U., Chmiel, H. and Strathmann, H. 1983. Verfahren zur kontinuierlichen enzymatischen Herstellung von Glu-consäure oder ihren Derivaten und Sorbit und/oder Mannit. Germ. Patent. Appl. DE 3326546A1.

  20. Gu, K.F. and Change, T.M.S. 1988. Conversion of ammonia or urea into L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD+. Trans. Am. Soc. Artif. Intern. Organs 34: 24–28.

    CAS  Google Scholar 

  21. Wolf, H., Modrow, S., Motz, M., Jameson, B., Hermann, G. and Foertsch, B. 1988. An integrated family of amino acid sequence analysis programs. Compu. Appl. Biosci. 4: 187–191.

    CAS  Google Scholar 

  22. Emini, E.A., Hughes, J.V., Perlow, D.S. and Boger, J. 1985. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55: 836–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Persson, M., Bülow, L. and Mosbach, K. 1990. Purification and site-specific immobilization of genetically engineered glucose dehydrogenase on thiopropyl-Sepharose. FEBS Lett. 270: 41–44.

    Article  CAS  Google Scholar 

  24. Nakamaye, K.L. and Eckstein, F. 1986. Inhibition of restriction endonuclease NciI cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucl. Acids. Res. 14: 9679–9698.

    Article  CAS  Google Scholar 

  25. Beaucage, S.L. and Caruthers, M.H. 1981. Deoxynucleoside phos-phoramidites-A new class of key intermediates for deoxypolynucle-otide synthesis. Tetrahedron Lett. 22: 1859–1862.

    Article  CAS  Google Scholar 

  26. Lindberg, M., Larsson, P.-O. and Mosbach, K. 1973. A new immobilized NAD+ analogue, its application in affinity chromatography and as a functioning coenzyme. Eur. J. Biochem. 40: 187–193.

    Article  CAS  Google Scholar 

  27. Stuchbury, T., Shipton, M., Norris, R., Malthouse, J.P.G., Brockle-hurst, K., Herbert, J.A.L. and Suschitzky, H. 1975. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-l,3-diazole moiety. Biochem. J. 151: 417–432.

    Article  CAS  Google Scholar 

  28. Lowry, O.H. and Passonneau, J.V. 1972. A Flexible system of Enzymatic Analysis p. 194–201. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, M., Månsson, MO., Bülow, L. et al. Continuous Regeneration of NAD(H) Covalently Bound to a Cysteine Genetically Engineered into Glucose Dehydrogenase. Nat Biotechnol 9, 280–284 (1991). https://doi.org/10.1038/nbt0391-280

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0391-280

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing