Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Organic solvents identify specific ligand binding sites on protein surfaces

Abstract

Enzymes frequently recognize substrates and pharmaceutical drugs through specific binding interactions in deep pockets on the protein surface. We show how the specificity-determining substrate binding site of hen egg-white lysozyme (HEWL) can be readily identified in aqueous solution by nuclear magnetic resonance spectroscopy using small organic solvent molecules as detection probes. Exchange of magnetization between the 1H nuclei of the protein and the ligands through dipole-dipole interactions is observed which allows the modeling of their position and orientation at the binding site. Combined with site-specific binding constants measured by titration experiments with different organic solvents, the method can provide important information for rational drug design. In addition, the lifetime of nonspecific interactions of HEWL with organic solvents is shown to be in the sub-nanosecond time range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alien, K.N., Bellamacina, C.R., Ding, X., Jeffery, C.J., Mattos, C., Petsko, G.A. et al. 1996. An experimental approach to mapping the binding surfaces of crystalline proteins. J. Phys. Chem. 100: 2605–2611.

    Article  Google Scholar 

  2. Mattos, C. and Ringe, D. 1996. Locating and characterizing binding sites on proteins. Nature Biotechnology 14: 595–599.

    Article  CAS  Google Scholar 

  3. Wescott, C.R. and Klibanov, A.M. 1994. The solvent dependence of enzyme specificity. Biochim. Biophys. Acta 1286: 1–9.

    Article  Google Scholar 

  4. Lumb, K.J., Cheetham, J.C., and Dobson, C.M. 1994. 1H nuclear magnetic resonance studies of hen lysozyme-N-acetylglucosamine oligosaccharide complexes in solution. Application of chemical shifts for the comparison of conformational changes in solution and in the crystal. J. Mol. Biol. 236: 1072–1087.

    Article  Google Scholar 

  5. Kelly, J.A., Sielecki, A.R., Sykes, B.D., James, M.N., and Phillips, D.C. 1970. X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature 282: 875–878.

    Article  Google Scholar 

  6. Cheetham, J.C., Artymiuk, P.J., and Phillips, D.C. 1992. Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 Å resolution. J. Mol. Biol. 224: 613–628.

    Article  CAS  Google Scholar 

  7. Hadfield, A.T., Harvey, D.J., Archer, D.B., MacKenzie, D.A., Jeenes, D.J., Radford, S.E. et al. 1994. Crystal structure or the mutant D52S hen egg white lysozyme with an oligosaccharide product. J. Mol. Biol. 243: 856–872.

    Article  CAS  Google Scholar 

  8. Maenaka, K., Matsushima, M., Song, H., Sunada, R., Watanabe, K., and Kumagai, I. 1995. Dissection of protein-carbohydrate interactions in mutant hen egg-white lysozyme complexes and their hydrolytic activity. J. Mol. Biol. 247: 281–193.

    Article  CAS  Google Scholar 

  9. Ernst, R.R., Bodenhausen, G., and Wokaun, A. 1987. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford.

  10. Yonath, A., Podjarny, A., Honig, B., Traub, W., Sielecki, A., Herzberg, O. et al. 1978. Structural analysis of denaturant-protein interactions: comparison between the effects of bromoethanol and SDS on denaturation and renaturation of triclinic lysozyme. Biophys. Struct. Mech. 4: 27–36.

    Article  CAS  Google Scholar 

  11. Lehmann, M.S., Mason, S.A., and Mclntyre, G.J. 1985. Study of ethanol-lysozyme interactions using neutron diffraction. Biochemistry 24: 5862–5869.

    Article  CAS  Google Scholar 

  12. Lehmann, M.S. and Stansfield, R.F.D. 1989. Binding of dimethyl sulfoxide to lysozyme in crystals, studied with neutron diffraction. Biochemistry 28: 7028–7033.

    Article  CAS  Google Scholar 

  13. Pike, A.C. and Acharya, K.R. 1994. A structural basis for the interaction of urea with lysozyme. Protein Science 3: 706–710.

    Article  CAS  Google Scholar 

  14. Imoto, T., Johnson, L.N., North, A.C.T., Phillips, D.C., and Rupley, J.A. 1972. Vertebrate Enzymes, pp. 665–864 in The Enzymes Vol. 7, Boyer, RD. (ed.). Academic Press, New York.

    Google Scholar 

  15. Lumb, K.J. and Dobson, C.M. 1992. 1H nuclear magnetic resonance studies of the interaction of urea with hen lysozyme. Origins of the conformational change induced in hen lysozyme by N-acetylglucosamine oligosaccharides. J. Mol. Biol. 227: 9–14.

    Article  CAS  Google Scholar 

  16. Smith, R.J., Williams, D.H., and James, K. 1989. Analysis of the rotational motions of the guanidino group in arginine. J. Chem. Soc. Chem. Commun. 682–683.

  17. Kundrot, C.E. and Richards, P.M. 1987. Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres. J. Mol. Biol. 193: 157–170.

    Article  CAS  Google Scholar 

  18. Bernstein, F.C., Koetzle, T.R., Williams, G.J.B., Meyer, E.F. Jr., Brice, M.D., Rodgers, J.R. et al. 1977. The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112: 535–542.

    Article  CAS  Google Scholar 

  19. Otting, G., Liepinsh, E., and Wüthrich, K. 1991. Protein hydration in aqueous solution. Science 264: 974–980.

    Article  Google Scholar 

  20. Otting, G. and Liepinsh, E. 1995. Protein hydration by high-resolution NMR spec-troscopy—Implications for MR image contrast. Acc. Chem. Res. 28: 171–177.

    Article  CAS  Google Scholar 

  21. Eigen, M. and Hammes, G.G. 1963. Elementary steps in enzyme reactions. Adv. Enzym. 25: 1–38.

    Google Scholar 

  22. Briand, J. and Ernst, R.R. 1991. Computer-optimized homonuclear TOCSY experiments with suppression of cross relaxation. Chem. Phys. Lett. 186: 276–285.

    Article  Google Scholar 

  23. Redfield, C. and Dobson, C.M. 1988. Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry 27: 122–136.

    Article  CAS  Google Scholar 

  24. Bodenhausen, G., Kogler, H., and Ernst, R.R. 1984. Selection of coherence-transfer pathways in NMR pulse experiments. J. Magn. Reson. 58: 370–388.

    CAS  Google Scholar 

  25. Geen, H. and Rreeman, R. 1991. Band-selective radiofrequency pulses. J. Magn. Reson. 93: 93–141.

    Google Scholar 

  26. Otting, G., Liepinsh, E., Farmer II, B.T., and Wuthrich, K. 1991. Protein hydration studied with homonuclear 3D 1H NMR experiments. J. Biomol. NMR 1: 209–215.

    Article  CAS  Google Scholar 

  27. Otting, G., Liepinsh, E., and Wuthrich, K. 1992. Protein hydration in mixed solvents at low temperatures. J. Am. Chem. Soc. 114: 7093–7095.

    Article  CAS  Google Scholar 

  28. Liepinsh, E. and Otting, G. 1994. Specificity of urea binding to proteins. J. Am. Chem. Soc. 116: 9670–9674.

    Article  CAS  Google Scholar 

  29. Xia, T.H., Ph, D. 1992. Thesis no. 9831, ETH Zürich, Switzerland.

  30. Ferrin, T.E., Huang, C.C., Jarvis, L.E., and Langridge, R. 1988. The MIDAS display system. J. Mol. Graphics 6: 13–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liepinsh, E., Otting, G. Organic solvents identify specific ligand binding sites on protein surfaces. Nat Biotechnol 15, 264–268 (1997). https://doi.org/10.1038/nbt0397-264

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0397-264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing