Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solubility as a Function of Protein Structure and Solvent Components

Abstract

This review deals with ways of stabilizing proteins against aggregation and with methods to determine, predict, and increase solubility. Solvent additives (osmolytes) that stabilize proteins are listed with a description of their effects on proteins and on the solvation properties of water. Special attention is given to areas where solubility limitations pose major problems, as in the preparation of highly concentrated solutions of recombinant proteins for structural determination with NMR and X-ray crystallography, refolding of inclusion body proteins, studies of membrane protein dynamics, and in the formulation of proteins for pharmaceutical use. Structural factors relating to solubility and possibilities for protein engineering are analyzed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Markussen, J., Diers, I., Hougaard, P., Langkjaer, L., Norris, K., Snel, L., Sørensen, A.R., Sørensen, E. and Voigt, H.O., 1988. Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability, and chemical stability of insulins substituted in positions A21, B13, B23, B27 and B30. Protein Engineering 2: 157–166.

    CAS  PubMed  Google Scholar 

  2. Dinnbier, U., Limpinsel, E., Schmid, R. and Bakker, E.P. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150: 348–357.

    CAS  PubMed  Google Scholar 

  3. Mitchell, R.D., Simmerman, H.K.B. and Jones, L.R. 1988. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263: 1376–1381.

    CAS  PubMed  Google Scholar 

  4. Farrell, H.M., Kumosinski, T.F., Pulaski, P. and Thompson, M.P. 1988. Calcium-induced associations of the caseins: a thermodynamic linkage approach to precipitation and resolubilization. Arch. Biochem. Biophys. 265: 146–158.

    CAS  PubMed  Google Scholar 

  5. Robinson, J.J. 1988. Roles for Ca2+, Mg2+ and NaCl in modulating the self-association reaction of hyalin, a major protein component of the sea-urchin extraembryonic hyaline layer. Biochem. J. 256: 225–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahoney, R., Wilder, T. and Chang, B.S. 1988. Substrate-induced thermal stabilization of lactase (Escherichia coli) in milk. Ann. N.Y. Acad. Sci. 542: 274–278.

    CAS  Google Scholar 

  7. McCloskey, M. and Poo, M. 1984. Protein diffusion in cell membranes: some biological implications. Int. Rev. Cyt. 87: 19–81.

    CAS  Google Scholar 

  8. Wright, P.E., Dyson, H.J. and Lerner, R.A. 1988. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry 27: 7167–7175.

    Article  CAS  PubMed  Google Scholar 

  9. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H. 1985. Hydrophobicity of amino acid residues in globular proteins. Science 229: 834–838.

    CAS  PubMed  Google Scholar 

  10. Privalov, P.L. 1979. Stability of proteins, small globular proteins. Adv. Protein Chem. 33: 167–241.

    CAS  PubMed  Google Scholar 

  11. Jaenicke, R. 1988. Stability and self organization of proteins. Naturwissenschaften 75: 604–610.

    CAS  PubMed  Google Scholar 

  12. Arakawa, T. and Timasheff, S.N. 1985. Theory of protein solubility. Meth. Enzym. 114: 49–77.

    CAS  PubMed  Google Scholar 

  13. Kinsella, J.E. 1984. Milk proteins: physicochemical and functional properties. CRC Crit. Rev. Food Sci. Nut. 21: 197–262.

    CAS  Google Scholar 

  14. Hjelmeland, L.M. and Chrambach, A. 1984. Solubilization of functional membrane proteins. Meth. Enzym. 104: 305–318.

    CAS  PubMed  Google Scholar 

  15. Gekko, K. and Timasheff, S. 1981. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20: 4677–86.

    CAS  PubMed  Google Scholar 

  16. Huot, J.Y. and Jolicoeur, C. 1985. Hydrophobic effects in ionic hydration and interactions, p. 417–471. In: The Chemical Physics of Solvation. Dogonadze, R.R. et al. (Eds.). Elsevier Science Publications. Amsterdam and New York.

    Google Scholar 

  17. Horbett, T.A. and Brash, J.L. 1987. Proteins at interfaces: current issues and future prospects. In: Proteins at Interfaces: Physiochemical and Biochemical Studies. Brash, J.L. and Horbett, T.A. (Eds.). Am. Chem. Soc, Washington, D.C., 1987.

    Google Scholar 

  18. Mann, D.F., Shah, K., Stein, D. and Snead, G.A. 1984. Protein hydrophobicity and stability support the thermodynamic theory of protein degradation. Biochim. Biophys. Acta 788: 17–22.

    CAS  PubMed  Google Scholar 

  19. van Den Oetelaar, P.J.M., de Man, B.M. and Hoenders, H.J. 1989. Protein folding and aggregation studies by isoelectric focusing across a urea gradient and isoelectric focusing in two dimensions. Biochim. Biophys. Acta 995: 82–90.

    CAS  PubMed  Google Scholar 

  20. Ries-Kautt, M.M. and Ducruix, A.F. 1989. Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. J. Biol. Chem. 264: 745–748.

    CAS  PubMed  Google Scholar 

  21. Goto, Y. and Fink, A.L. 1989. Conformational states of β-lactamase: molten globule states at acidic and alkaline pH with high salt. Biochemistry 28: 945–952.

    CAS  PubMed  Google Scholar 

  22. Zimmerman, S.B. and Trach, S.O. 1988. Effects of macromolecular crowding on the association of E. coli ribosomal particles. Nucleic Acids Res. 16: 6309–6326.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ingham, K.C. 1984. Protein precipitation with polyethylene glycol. Meth. Enzym. 104: 351–356.

    CAS  PubMed  Google Scholar 

  24. Hanada, K., Yamato, I. and Anraku, Y. 1988. Solubilization and reconstitution of proline carrier in Escherichia coli; quantitative analysis and optimal conditions. Biochim. Biophys. Acta 939: 282–288.

    CAS  PubMed  Google Scholar 

  25. Brenner, S.L., Zlotnick, A. and Griffith, J.D. 1988. RecA protein self-assembly. Multiple discrete aggregation states. J. Mol. Biol. 204: 959–972.

    CAS  PubMed  Google Scholar 

  26. Schwarz, G. and Beschiaschvili, G. 1988. Kinetics of melittin self-association in aqueous solution. Biochemistry 27: 7826–31.

    CAS  Google Scholar 

  27. Zimmerle, C.T. and Frieden, C. 1988. Effect of pH on the mechanism of actin polymerization. Biochemistry 27: 7766–72.

    CAS  PubMed  Google Scholar 

  28. Yang, D.S.C., Sax, M., Chakrabartty, A. and Hew, C.L. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333: 232–237.

    CAS  PubMed  Google Scholar 

  29. Richards, F.M., 1977. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng. 6: 151–176.

    CAS  Google Scholar 

  30. Eisenberg, D., Wilcox, W. and McLachlan, A.D. 1986. Hydrophobicity and amphiphilicity in protein structure. J. Cell. Biochem. 31: 11–17.

    CAS  PubMed  Google Scholar 

  31. Hageman, M.J. 1988. The role of moisture in protein stability. Drug Development and Ind. Pharm. 14: 2047–2070.

    CAS  Google Scholar 

  32. Good, N.E. and Izawa, S. 1972. Hydrogen ion buffers. Meth. Enz. 24: 53–68.

    CAS  Google Scholar 

  33. Blanchard, J.S. 1984. Buffers for enzymes. Meth. Enzym. 104: 404–414.

    CAS  PubMed  Google Scholar 

  34. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. 1982. Living with water stress; evolution of osmolyte systems. Science 217: 1214–1222.

    CAS  PubMed  Google Scholar 

  35. McPherson, A. 1982. Preparation and Analysis of Protein Crystals. John Wiley and Sons, NY.

    Google Scholar 

  36. Feher, G. and Kam, Z. 1985. Nucleation and growth of protein crystals: general principles and assays. Meth. Enz. 114: 77–111.

    CAS  Google Scholar 

  37. Kamoun, P.P. 1988. Denaturation of globular proteins by urea: breakdown of hydrogen or hydrophobic bonds?. TIBS 15: 424–425.

    Google Scholar 

  38. Schellekens, H., de Reus, A., Bolhuis, R., Fountoulakis, M., Schein, C., Ecsödi, J., Nagata, S. and Weissmann, C. 1981. Comparative antiviral efficiency of leukocyte and bacterially produced human α-interferon in rhesus monkeys. Nature 292: 775–776.

    CAS  PubMed  Google Scholar 

  39. Arnold, F.H. 1988. Protein design for non-aqueous solvents. Protein Eng. 2: 21–25.

    CAS  PubMed  Google Scholar 

  40. Narita, M., Ishikawa, K., Chen, J.-Y. and Kim, Y. 1984. Prediction and improvement of protected peptide solubility in organic solvents. Int. J. Pept. Prot. Res. 24: 580–587.

    CAS  Google Scholar 

  41. Jaenicke, R. and Rudolph, R. 1989. Folding proteins, p. 191–223. In: Protein Structure a Practical Approach T.E. Creighton (Ed.). Oxford University Press, UK.

    Google Scholar 

  42. Rudolph, R. and Fisher, S. 1987. Verfahrung zur Renaturierung von Proteinen. Eur Patent Appl. 0241–022.

  43. Weir, M.P. and Sparks, J. 1987. Purification and renaturation of recombinant human interleukin-2. Biochem. J. 245: 85–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli . Biochem. J. 240: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. and Stüber, D. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6: 1321–1325.

    CAS  Google Scholar 

  46. Smith, D.C. and Hider, R.C. 1988. Thiol exchange catalysed refolding of small proteins utilizing solid-phase supports. Biophys. Chem. 31: 21–28.

    CAS  PubMed  Google Scholar 

  47. Light, A., Duda, C.T., Odorzynski, T.W. and Moore, W.G.I. 1986. Refolding of serine proteinases. J. Cell. Biochem. 31: 19–26.

    CAS  PubMed  Google Scholar 

  48. van Kimmenade, A., Bond, M.W., Schumacher, J.H., Laquoi, C. and Kastelein, R.A., 1988. Expression, renaturation and purification of recombinant human interleukin-4 from Escherichia coli . Eur. J. Biochem. 173: 109–114.

    CAS  PubMed  Google Scholar 

  49. Kühlbrandt, W. 1988. Three-dimensional crystallization of membrane proteins. Quarterly Rev. Biophysics 21: 429–477.

    Google Scholar 

  50. Wallace, B.A., Cascio, M. and Mielke, D.L. 1986. Evaluation of methods for the prediction of membrane protein secondary structures. Proc. Natl. Acad. Sci. 83: 9423–9427.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Furth, A.J., Bolton, H., Potter, J. and Priddle, J.D., 1984. Detergent from Proteins. Meth. Enzym. 104: 318–328.

    CAS  PubMed  Google Scholar 

  52. Lee, K.H., Fitton, J.E. and Wüthrich, K. 1987. Nuclear magnetic resonance investigation of the conformation of δ-haemolysin bound to dodecylphosphocholine micelles. Biochim. Biophys. Acta 911: 144–153.

    CAS  PubMed  Google Scholar 

  53. Maloney, P.C. and Ambudkar, S.V. 1989. Functional reconstitution of prokaryote and eukaryote membrane proteins. Arch. Biochem. Biophys. 269: 1–10.

    CAS  PubMed  Google Scholar 

  54. Welte, W. and Wacker, T. 1989. Protein-detergent micellar solutions for the crystallization of a membrane protein. Some general approaches and experiences with the crystallization of pigment-protem complexes from purple bacteria. In: Membrane protein crystallization. Michel, H. (Ed.). CRC Press, Inc, Boca Raton, FL.

    Google Scholar 

  55. YaDeau, J.T. and Blobel, G. 1989. Solubilization and characterization of yeast signal peptidase. J. Biol. Chem. 264: 2928–2934.

    CAS  PubMed  Google Scholar 

  56. Fargin, A., Faye, J.C., le Maire, M., Bayard, F., Potier, M. and Beauregard, G. 1988. Solubilization of a tamoxifen-binding protein. Biochem. J. 256: 229–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kline, A.D., Braun, W. and Wüthrich, K. 1988. Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry. J. Mol. Biol. 204: 675–724.

    CAS  PubMed  Google Scholar 

  58. Montelione, G.T., Wüthrich, K., Nice, E.C., Burgess, A.W. and Scheraga, H.A. 1987. Solution structure of murine epidermal growth factor: determination of the polypeptide backbone chain-fold by nuclear magnetic resonance and distance geometry. Proc. Nat. Acad. Sci. 84: 5226–5230.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Oswald, R.E., Bogusky, M.J., Bamberger, M., Smith, R.A.G. and Dobson, C.M. 1989. Dynamics of the multidomain fibrinolytic protein urokinase from two-dimensional NMR. Nature 337: 579–582.

    CAS  PubMed  Google Scholar 

  60. Fesik, S.W. 1988. Isotope-edited NMR spectroscopy. Nature 332: 865–866.

    Google Scholar 

  61. Oh, B.H., Westler, W.M., Darba, P. and Markley, J.L. 1988. Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment. Science 240: 908–911.

    CAS  PubMed  Google Scholar 

  62. Senn, H., Eugster, A., Otting, G., Suter, F. and Wüthrich, K. 1987. 15N-labeled P22 c2 repressor for nuclear magnetic resonance studies of protein-DNA interactions. Eur. J. Biophys. 14: 301–306.

    CAS  Google Scholar 

  63. Markley, J.L. 1987. One- and Two-dimensional NMR spectroscopic investigations of the consequences of amino acid replacements in proteins, p. 15–33. In: Protein Engineering D.L. Oxender and C.F. Fox (Eds.). Alan R. Liss, Inc., NY.

    Google Scholar 

  64. Fairbrother, W.J., Hall, L., Littlechild, J.A., Walker, P.A., Watson, H.C. and Williams, R.J.P. 1988. Probing the 3-phosphoglycerate-binding site of yeast phosphoglycerate kinase using site-specific mutants and 1H nuclear magnetic resonance spectroscopy. Biochem. Soc. Proc. 16: 724–725.

    CAS  Google Scholar 

  65. Baumann, G., Frömmel, C. and Sander, C. 1989. Polarity as a criterion in protein design. Protein Eng. 2: 329–334.

    CAS  PubMed  Google Scholar 

  66. Richards, F.M. 1986. Protein design: are we ready?. UCLA Symp. Mol. Cell. Biol. 39: 171–196.

    Google Scholar 

  67. Toniolo, C., Bonora, G.M., Moretto, V. and Bodanszky, M. 1985. Self-association and solubility of peptides. Int. J. Pept. Prot. Res. 25: 425–430.

    CAS  Google Scholar 

  68. Ferreira, L.C.S., Schwarz, U., Keck, W., Charlier, P., Dideberg, O. and Ghuysen, J.-M. 1988. Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12. Eur. J. Biochem. 171: 11–16.

    CAS  PubMed  Google Scholar 

  69. Argos, P. 1988. An investigation of protein subunit and domain interfaces. Protein Eng. 2: 101–113.

    CAS  PubMed  Google Scholar 

  70. Shaw, W.V. 1987. Protein engineering. The design, synthesis and characterization of factitious proteins. Biochem. J. 246: 1–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Le, H.V., Syto, R., Schwartz, J., Nagabhushan, T.L. and Trotta, P.P. 1988. Purification and properties of a novel recombinant human hybrid interferon, δ-4 α2/α1. Biochim. Biophys. Acta 957: 143–151.

    CAS  PubMed  Google Scholar 

  72. Zuber, H. 1988. Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys. Chem. 29: 171–179.

    CAS  PubMed  Google Scholar 

  73. Menéndez-Arias, L. and Argos, P. 1989. Engineering protein thermal stability. Sequence statistics point to residue substitutions in α-helices. J. Mol. Biol. 206: 397–406.

    PubMed  Google Scholar 

  74. Fauchère, J., Charton, M., Kier, L.B., Verloop, A. and Pliska, V. 1988. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Prot. Res. 32: 269–278.

    Google Scholar 

  75. Wolfenden, R., Andersson, L., Cullis, P.M. and Southgate, C.C. 1981. Affinities of amino acid side chains for solvent water. Biochemistry 20: 849–855.

    CAS  PubMed  Google Scholar 

  76. Janin, J. 1979. Surface and inside volumes in globular proteins. Nature 277: 491–492.

    CAS  PubMed  Google Scholar 

  77. Nozaki, Y. and Tanford, C. 1971. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem. 246: 2211–2217.

    CAS  PubMed  Google Scholar 

  78. Knauf, M.J., Bell, D.P., Hirtzer, P., Luo, Z.-P., Young, J.D. and Katre, N.V. 1988. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water soluble polymers. J. Biol. Chem. 263: 15064–15070.

    CAS  PubMed  Google Scholar 

  79. Baillargeon, M.W. and Sonnet, P.E. 1988. Lipase modified for solubility in organic solvents. Ann. N.Y. Acad. Sci. 542: 244–49.

    CAS  PubMed  Google Scholar 

  80. Kikuchi, T., Nemethy, G. and Sheraga, H.A. 1988. Prediction of probable pathways of folding in globular proteins. J. Prot. Chem. 7: 491–507.

    CAS  Google Scholar 

  81. Holley, L.H. and Karplus, M. 1989. Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA 86: 152–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Karplus, M. 1987. The prediction and analysis of mutant structures, p. 35–44. In: Protein Engineering D.L. Oxender and C.F. Fox (Eds.). Alan R. Liss, Inc., NY.

    Google Scholar 

  83. Creighton, T.E. 1988. On the relevance of non-random polypeptide conformations for protein folding. Biophys. Chem. 31: 155–162.

    CAS  PubMed  Google Scholar 

  84. DeGrado, W.F., Wasserman, Z.R. and Lear, J.D. 1989. Protein design, a minimalist approach. Science 243: 622–628.

    CAS  PubMed  Google Scholar 

  85. Kim, P.S. 1988. Passing the first milestone in protein design. Prot. Eng. 2: 249–250.

    CAS  Google Scholar 

  86. Schein, C. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schein, C. Solubility as a Function of Protein Structure and Solvent Components. Nat Biotechnol 8, 308–317 (1990). https://doi.org/10.1038/nbt0490-308

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0490-308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing