Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Fluorescence lifetime measurements in confocal microscopy of neurons labeled with multiple fluorophores

Abstract

In order to resolve multiple fluorophores by their lifetimes in discrete tissue domains, the labeling intensity must be sufficiently strong and the intensity-difference between the labels must not be too large, the rate of fading should be similar for all fluorophores, and the lifetimes of the fluorophores should be sufficiently discrete. We could readily distinguish Cyanine-3.18 (Cy-3), Lissamine Rhodamine (LRSC), and Texas Red when they were not colocalized in tissue profiles. Colocalization of Cy-3 and LRSC, as well as Cy3 and Texas Red, could also be distinguished, while the combination of LRSC and Texas Red was more difficult. We have used fluorescence lifetime recordings in confocal microscopy to detect different neuropeptides in neurons. We demonstrate that somatostatin and galanin are colocalized in axon profiles of the spinal cord dorsal horn.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weesendorf, M.W. 1990. Characterization and use of multi-color fluorescence microscopic technique, in Analysis of neuronal microcircuits and synaptic interaction. Bjrklund, A., Hkfelt, T., Wouterlood, F.Q., and van den Pol, A.N. (eds). Elsevier Publishing, Amsterdam.

    Google Scholar 

  2. Wessendorf, M.W. and Brelje, T.C. 1993. Multicolor fluorescence microscopy using the laser-scanning confocal microscope. Neuro. Protocols 2: 121.

    Google Scholar 

  3. Mossberg, K., Arvidsson, U., and Ulfhake, B. 1990. Computerized quantification of immunofluorescence-labeled axon terminals and analysis of co-localization of neurochemicals in axon terminals with confocal scanning laser microscope. J. Histochem. Cytochem. 38: 179.

    Article  CAS  Google Scholar 

  4. Lakowicz, J.R. 1983. Principles of fluorescence spectroscopy. Plenum Press, New York.

    Book  Google Scholar 

  5. Åslund, N. and Carlsson, K. 1994. Simultaneous life-time imaging of two fluorophores using a confocal laser microscope. IS&T/SPIE International Symposium on Electronic Imaging, Three–dimensional Microscopy: Image Acquisition and Processing. SPIE 2184, Proceedings.

  6. Buurman, E.P., Sanders, R., Draaijer, A., Gerritsen, H.C. van Veen, J.J.F., Houpt, P.M. et al. 1992. Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14: 155.

    Article  Google Scholar 

  7. Sasaki, K., Koshioka, M., and Masuhara, H. 1991. Three–dimensional space- and time-resolved fluorescence spectroscopy. Applied Spectroscopy 45: 1041.

    Article  CAS  Google Scholar 

  8. Ghiggino, K.P., Harris, M.R., and Spizziri, P.G. 1992. Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope. Rev. Sci. Instrum. 63: 2999.

    Article  CAS  Google Scholar 

  9. Brismar, H., Trepte, O., and Ulfhake, B. 1995. Spectra and fluorescence lifetimes of Lissamine Rhodamine, tetramethyl rhodamine isothiocyanate, Texas Red, and Cyanine 3. 18 fluorophores, and influences of some environmental factorerecoixted with a confocal laser scanning microscope. J. Histochem. Cytochem. 43: 699.

    Article  CAS  Google Scholar 

  10. Todd, A.J. and Spike, R.C. 1993. The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Progr. Neurobiology 41: 609–645.

    Article  CAS  Google Scholar 

  11. Willis, W.D. Jr. and Coggeshall, R.E. 1991. Sensory mechanisms of the spinaicord, 2nd ed. Plenum Press, New York.

    Book  Google Scholar 

  12. Xu, Zhang 1994. Messenger plasticity in primary sensory neurons following peripheral nerve injury. Thesis, Karolinska Institutet.

  13. Köllner, M. and Wolfrum, J. 1992. How many photons are necessary for fluoresoence-Iifetime measurements? Chem. Phys. Lett. 200: 199.

    Article  Google Scholar 

  14. Florijn, R.J., Slats, J., Tanke, H.J., and Raap, A.K. 1995. Analysis of antifadeing reagents for fluorescence microscopy. Cytometry 19: 177–182.

    Article  CAS  Google Scholar 

  15. Oida, T., Sako, Y., and Kusumi, A. Fluorescence lifetime imaging microscopy (flimscopy). Biophys J. 64: 676.

  16. Morgan, C.G., Mitchell, A.C., and Murray, J.G. 1991. Prospects for confocal imaging based on nanosecond fluorescence decay time. J. Microscopy 165: 49.

    Article  Google Scholar 

  17. Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., Berndt, K.W., and Johnson, M.L. 1992. Fluorescence lifetime imaging. Analytical Biochem. 202: 316.

    Article  CAS  Google Scholar 

  18. Spencer, R.D. and Weber, G. 1969. Measurements of subnanosecond fluorescence life-times with a cross-correlation phase fluorometer. Ann. NY Acad. Sci. 158: 361.

    Article  CAS  Google Scholar 

  19. Gratton, E. and Limkeman, M. 1983. A continuously variable frequency cross correlation phase fluorometer with picosecond resolution. Biophys. J. 44: 315.

    Article  CAS  Google Scholar 

  20. Gadella, T.W.J., Jovin, T.M., and Clegg, R.M. 1993. Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophys. Chem. 48: 221.

    Article  CAS  Google Scholar 

  21. Lakowicz, J.R., Laczko, Q., Cherek, H., Gratton, E., and Limkeman, M. 1984. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J. 4: 463.

    Article  Google Scholar 

  22. Weber, G. 1981. Resolution of the fluorescence lifetimes in a heterogenous system by phase and modulation measurements. J. Phys. Chem. 85: 949.

    Article  CAS  Google Scholar 

  23. Gratton, E., Limkeman, M., Lakowicz, J.R., Maliwal, B.P., Cherek, K., Laczko, G. 1984. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys. J. 46: 479.

    Article  CAS  Google Scholar 

  24. Ju, G., Hkfelt, T., Brodin, E., Fahrenkrug, J., Fischer, J.A., Frey, P. et al. 1987. Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivrty and their relation to substance P-, somatostatin-, galanin-, vasoacth/e intestinal porypeptide- and chotecystokinin-like immunoreactivie ganglion cells. Cell Tiss. Res. 247: 417–431.

    Article  CAS  Google Scholar 

  25. Cameron, A.A., Leah, J.D., and Snow, P.J. 1988. The coexistence of neuropeptides in feline sensory neurons. Neurosci. 27: 969–979.

    Article  CAS  Google Scholar 

  26. Hunt, S.P. . pp. 53–84 in Cytochemistry of the spinal chord. Chemical Neuroanatomy. Emson, RC. (ed.). Raven Press, New York.

  27. Tuchscherer, M.M. and Seybold, V.S. 1989. A quantitative study of the coexistence of peptides in varicosities within the superficial laminea of the dorsal hosrn of the spinal cord. J. Neurosci. 9: 195–205.

    Article  CAS  Google Scholar 

  28. Arvidsson, U., et al. 1990. 5-Hydrotryptamine, substance P, and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: immunohistochemical and chemical studies. Synapse 65: 37–270.

    Google Scholar 

  29. O'Connor, D.V. and Philips, D. 1984. Time-correlated single photon counting. Academic Press, London.

    Google Scholar 

  30. Åslund, N. and Carlsson, K. 1987. Confocal imaging for 3-D digital microscopy. Appl. Opt. 26: 3232.

    Article  Google Scholar 

  31. Marquardt, D.W. 1963. An algorithm least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11: 431.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brismar, H., UIfhake, B. Fluorescence lifetime measurements in confocal microscopy of neurons labeled with multiple fluorophores. Nat Biotechnol 15, 373–377 (1997). https://doi.org/10.1038/nbt0497-373

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0497-373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing