Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

Abstract

Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rawlinson, C.J. and Muthyalu, G. 1979. Disease of winter oilseed rape: occurrence, effects and control. Journal of Agricultural Science 93: 593–606.

    Article  CAS  Google Scholar 

  2. Evans, E.J., Gladers, P., Davies, J.L.M., Ellerton, D.R., Hardwick, N.V., Hawkins, J.H., Jones, D.R., and Simkin, M.B. 1984. Current status of diseases and disease control of winter oilseed rape in England. Aspects of Applied Biology 6: 323–324.

    Google Scholar 

  3. CETIOM. 1992. Les maladies du colza. Les points techniques CETIOM. CETIOM Ed., Paris.

  4. Conn, K.L. and Tewari, J.P. 1990. Survey of Alternaria black spot and Sclerotinia stem rot in central Alberta in 1989. Canadian Plant Disease Survey 70: 66–67.

    Google Scholar 

  5. Seoun, F.S., Seguin-Swartz, G., and Rakow, G.F.W. 1989. Genetic variation in reaction to Sclerotinia stem rot in Brassica species. Can. J. Plant Sci. 69: 229–232.

    Article  Google Scholar 

  6. Collinge, D.B. and Sluzarenko, A.J. 1987. Plant gene expression response to pathogens. Plant Mol. Biol. 9: 389–410.

    Article  CAS  Google Scholar 

  7. Legrand, M., Kauffmann, S., Geoffrey, P., and Fritig, B. 1987. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc. Natl. Acad. Sci. USA 84: 6750–6754.

    Article  CAS  Google Scholar 

  8. Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis and taxonomy of fungi. Ann. Rev. Microbiol. 22: 87–108.

    Article  CAS  Google Scholar 

  9. Roberts, W.K. and Selitrennikoff, C.P. 1986. Isolation and partial characterization of two antifungal proteins from barley. Biochem. Biophys. Acta 880: 161–170.

    Article  CAS  Google Scholar 

  10. Jach, G., Logeman, S., Wolf, G., Oppenheim, A., Chet, I., Schell, J., and Logeman, J. 1992. Expression of a bacterial chitinase leads to improved resistance of transgenic tobacco plants against fungal infection. Biopractice 1: 33–40.

    Google Scholar 

  11. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knoltown, S., Mauvais, C.J., and Broglie, R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani . Science 254: 1194–1197.

    Article  CAS  Google Scholar 

  12. Lin, W., Anuratha, C.S., Datia, K., Potrykus, I., Muthukrishnan, S., and Datia, S.K. 1995. Genetic engineering of rice for resistance to sheath blight. Bio/Technology 13: 686–691.

    CAS  Google Scholar 

  13. Broglie, K.E., Gaynor, J.J., and Broglie, R. 1986. Ethylene-regulated gene expression: Molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris . Proc. Natl. Acad. Sci. USA 83: 6820–6824.

    Article  CAS  Google Scholar 

  14. Broglie, K.E., Gaynor, J.J., Durand-Tardif, M., and Broglie, R. 1985. Regulation of chitinase expression by ethylene, pp. 247–258. in Biotechnology in Plant Science. Zaitkin, M., Day, P., and Hollaender, A. (eds.). Academic Press, New York.

    Chapter  Google Scholar 

  15. Shinshi, H., Mohnen, D., and Meins, Jr., F. 1987. Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc. Natl. Acad. Sci. USA 84: 89–93.

    Article  CAS  Google Scholar 

  16. Bevan, M. 1984. Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  17. Dubois, M., Grison, R., Leguay, J.J., Pignard, A., and Toppan, A. 1984. Recombinant gene coding for a protein having an endochitinase activity. Eur. Pat. Appl. EP♯WO 92/01792.

  18. Guerche, P., Jouanin, L., Tepfer, D., and Pelletier, G. 1987. Genetic transformation of oilseed rape (Brassica napus) by the Ri T-DNA of Agrobacterium rhizogenes and analysis of inheritance of the transformed phenotype. Mol. Gen. Genet 206: 382–386.

    Article  CAS  Google Scholar 

  19. Boulter, M.E., Croy, E., Simpson, P., Shields, R., Croy, R.R.D., and Shirsat, A.H. 1990. Transformation of Brassica napus L. (Oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes—A comparison. Plant Science 70: 91–99.

    Article  CAS  Google Scholar 

  20. Rasmussen, U., Bojsen, K., and Collinge, D.B. 1992. Cloning and characterization of a pathogen-induced chitinase in Brassica napus . Plant Mol. Biol. 20: 277–287.

    Article  CAS  Google Scholar 

  21. Lindhorst, H.J.M., van Loon, L.C., van Rossum, C.M.A., Mayer, A., Bol, J.F., van Roeckel, J.S.C., Meulenhoff, E.J.S., and Cornelissen, B.J.C. 1990. Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol. Plant-Microbe Interact. 3: 252–258.

    Article  Google Scholar 

  22. Cook, R.J. and Evans, E.J. 1978. Build up of diseases with intensification of oilseed rape in England, pp. 333–337. Proceedings of the 5th International Rapeseed Conference, Malmo.

  23. Brun, H., Renard, M., Tribodet, M., Plessis, J., and Tanguy, X. 1987. A field study of rapeseed (Brassica napus L.var. oleifera) resistance to Sclerotinia sclerotiorum (Lib.) de Bary, pp. 1216–1221. Proceedings of the 7th International Congress on Rapeseed, Poznan.

  24. Vierheilig, H., Alt, M., Neuhaus, J.M., Boiler, T., and Wiemken, A. 1993. Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mossae . Mol. Plant-Microbe Interact. 6: 261–264.

    Article  CAS  Google Scholar 

  25. Benhamou, N., Broglie, K.E., Chet, I., and Broglie, R. 1993. Cytology of infection of 35S-bean chitinase transgenic canola plants by Rhizoctonia solani: cytochemical aspects of chitin breakdown in vivo. Plant J. 4: 295–305.

    Article  CAS  Google Scholar 

  26. Roby, D., Gadelle, A., and Toppan, A. 1987. Systemic induction of chitinase activity in melon plants. Biochem. Biophys. Res. Comm. 143: 885–892.

    Article  CAS  Google Scholar 

  27. Maddock, S.E. 1979. Studies on the biology of the light leaf spot disease of oilseed rape and other Brassicas. Ph.D. Thesis, University of Cambridge.

  28. Odell, J.T., Nagy, F., and Chua, N.H. 1985. Identification of DNA sequences required for activity of the Cauliflower Mosaic virus 35S promoter. Nature 313: 810–812.

    Article  CAS  Google Scholar 

  29. Durand-Tardif, M., Broglie, R., Slightom, J., and Tepfer, D. Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum . J. Mol. Biol. 186: 557–564.

    Article  CAS  Google Scholar 

  30. Molano, J., Duran, A., and Cabib, E. 1977. A rapid and sensitive assay for chitinase using tritiated chitin. Anal. Biochem. 83: 648–656.

    Article  CAS  Google Scholar 

  31. SAS Institute. 1991. SAS/STAT User's Guide, release 6.03. SAS Institute, Gary, NC.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grison, R., Grezes-Besset, B., Schneider, M. et al. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14, 643–646 (1996). https://doi.org/10.1038/nbt0596-643

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0596-643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing