Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Two Forms of Endoglucanase from the Basidiomycete Schizophyllum Commune and their Relationship to Other β-1,4-Glycoside Hydrolases

Abstract

Two endo-β-1,4-glucanases, (EGI and EGII), produced by Schizophyllum commune display similar chemical and physical properties. In addition, their amino terminal amino acid sequences are identical except for an initial 16-residue alanine-rich sequence in EGI. We suggest that one explanation for the molecular heterogeneity of endoglucanases in this species is extracellular proteolytic cleavage of EGI. The catalytic sites of EGI and II have previously been proposed on the basis of structural similarities with lysozyme. Here, we infer a similar relationship between cellobiohydrolase I from Trichoderma reesei, and the proposed catalytic sites of EGI and II, from their respective amino acid sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, R.D., Jr., and Jurasek, L. (eds.). Hydrolysis of cellulose: Mechanisms of enzymatic and acid catalysis. 1979. Adv. Chem. Series 181. American Chem. Soc., Washington D.C.

  2. Gritzali, M. and Brown, R.D., Jr. 1978. The cellulase system of Trichoderma . Adv. Chem. Series 181: 237–260.

    Article  CAS  Google Scholar 

  3. Eriksson, K.E. and Pettersson, B. 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum for the breakdown of cellulose. 1. Separation, purification and physico-chemical characterization of five endo-1,4-β-glucanases. Eur. J. Biochem. 51: 193–206.

    Article  CAS  Google Scholar 

  4. Eriksson, K.E. and Pettersson, B. 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum for the breakdown of cellulose. 3. Purification of physico-chemical characterization of an exo-1,4-β-glucanase. Eur. J. Biochem. 51: 213–218.

    Article  CAS  Google Scholar 

  5. Nakayama, M., Tomita, Y., Suzuki, H. and Nisizawa, K. 1976. Partial proteolysis of some cellulase components from Trichoderma viride, and the substralc specificity of the modified products. J. Biochem. (Tokyo) 79: 955–966.

    Article  CAS  Google Scholar 

  6. Gong, C.S., Ladisch, M.R. and Tsao, G.T. 1979. Biosynthesis, purification and mode of action of cellulases ofTrichoderma reesei . Adv. Chem. Series 181: 261–287.

    Article  Google Scholar 

  7. Gum, E.K., Jr., and R.D., Brown, Jr. 1977. Comparison of four purified extracellular 1,4-β-D-glucan cellobiohydrolase enzymes from Trichoderma viride . Biochim. Biophys. Acta 492: 225–231.

    Article  CAS  Google Scholar 

  8. Labudova, I., and Farkas, V. 1983. Multiple enzyme forms in the cellulase system of Trichoderma reesei during its growth on cellulose.Biochim. Biophys. Acta 744: 135–140.

    Article  CAS  Google Scholar 

  9. Fagerstam, L.G. and Pettersson, L.G. 1980. The 1,4-β-glucan cello-biohydrolases of Trichoderma reesei QM9414. A new type of cellulolytic synergism. FEBS Letters. 119: 97–100.

    Article  Google Scholar 

  10. Pettersson, L.G., Fagerstam, L.G., Bhikhabhai, R. and Leandoer, K. 1981. The cellulase complex of Trichoderma reesei QM9414. SPCI Intcrnatl. Symp. Wood and Pulping Chem. (Stockholm) Preprints. 3: 39–42.

    CAS  Google Scholar 

  11. Shoemaker, S., Watt, K., Tsitovsky, G. and Cox, R. 1983. Characterization and properties of cellulases purified from Trichoderma reesei strain L27. BIO/TECHNOLOGY 1: 687–690.

    CAS  Google Scholar 

  12. Shoemaker, S., Schweickart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K. and Innis, M. 1983. Molecular cloning of exocellobiohydrolase I derived from Trichoderma reesei strain L27. BIO/TECHNOLOGY 1: 691–696.

    CAS  Google Scholar 

  13. Rho, D., Desrochers, M., Jurasek, L., Driguez, H. and Defaye, J. 1982. Induction of cellulase in Schizophyllum commune: Thiocellobiose as a new inducer. J. Bact. 149: 47–53.

    CAS  PubMed  Google Scholar 

  14. Desrochers, M., Jurasek, L. and Paice, M.G. 1981. Production of cellulase β-glucosidase, and xylanase by Schizophyllum commune grown on a cellulose-peptone medium. Dev. Ind. Microbiol. 22: 675–684.

    CAS  Google Scholar 

  15. Desrochers, M., Jurasek, L. and Paice, M.G. 1981. High production of β-glucosidase in Schizophyllum commune: Isolation of the enzyme and effect of the culture filtrate on cellulose hydrolysis. Appl. Environ. Microbiol. 41: 222–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shoemaker, S.P. and Brown, R.D. Jr. 1978. Enzymic activities of endo-1,4-(β-D-glucanases as purified from Trichoderma viride . Biochim. Biophys. Acta 523: 133–146.

    Article  CAS  Google Scholar 

  17. Ng, T.K. and Zeikus, J.G. 1981. Purification and characterization of an endoglucanase (1,4-β-D-glucan glucanohydrolase) from Clostridium thermocellum . Biochem. J. 199: 341–350.

    Article  CAS  Google Scholar 

  18. Izui, K., Nielsen, J.B.K., Caulfield, M.P. and Lampen, J.O. 1980. Large exopenicillinase initial extracellular form detected in cultures of Bacillus licheniformis . Biochemistry 19: 1882–1886.

    Article  CAS  Google Scholar 

  19. Beguin, P., Cornet, P. and Millet, J. 1983. Identification of the endoglucanase encoded by the Cel B gene of Closlridium thennocdlum . Biochimie 65: 495–500.

    Article  CAS  Google Scholar 

  20. Eriksson, K.E. and Pettersson, B. 1982. Purification and characterization of two acidic proteases from the white-rot fungus Sporotnchum pulverulentum . Eur. J. Biochem. 124: 635–642.

    Article  CAS  Google Scholar 

  21. Yaguchi, M., Roy, C., Rollin, C.F., Paice, M.G. and Jurasek, L. 1983. A fungal cellulase shows sequence homology with the active site of hen egg-white lysozyme. Biechem. Biophys. Res. Comm. 116: 408–411.

    Article  CAS  Google Scholar 

  22. Canfield, R.E. 1963. The amino acid sequence of egg-white lysozyme. J. Biol. Chem. 238: 2698–2707.

    CAS  PubMed  Google Scholar 

  23. Schoentgen, F., Jollés, J. and Jollés, P. 1982. Complete amino acid sequence of ostrich (Struthio camelus) egg-white lysozyme, a goose-type lysozyme.Eur. J. Biochem. 123: 489–497.

    Article  CAS  Google Scholar 

  24. Grütter, M.G., Weaver, L.H. and Matthews, B.W. 1983. Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature 303: 828–831.

    Article  Google Scholar 

  25. Teeri, T., Salovuori, I. and Knowles, J. 1983. The molecular cloning of the major cellulase gene from Trichoderma reesei . BIO/TECHNOLOGY 1: 696–699.

    CAS  Google Scholar 

  26. Barker, W.C. and Dayhoff, M.O. 1972. Detecting distant relationships: computer methods and results, p.101–110. In Atlas of protein sequence and structure. M. O. Dayhoff (ed.), National Biomed. Res. Foundation Maryland.

    Google Scholar 

  27. Doolittle, R.F. 1981. Similar amino acid sequences: Chance or common ancestry? Science 214: 149–158.

    Article  CAS  Google Scholar 

  28. Inoye, M., Imada, M., and Tsugita, A. 1970. The amino acid sequence of T4 phage lysozyme. 4. Dilute acid hydrolysis and the order of tryptic peptides. J. Biol. Chem. 245: 3479–3484.

    Google Scholar 

  29. Matthews, B.W., Grütter, M.G., Anderson, W.F. and Remington, S.J. 1981. Common precursor of lysozymes of hen egg-white and bacteriophage T4. Nature 290: 334–335.

    Article  CAS  Google Scholar 

  30. Barras, D.R, Moore, A.E., and Stone, B.A. 1969. Enzyme substrate relationships among β-glucan hydrolases. Adv. Chem. Ser. 95: 105–138.

    Article  CAS  Google Scholar 

  31. Paice, M.G. and Jurasek, L. 1979. Structural and mechanistic comparisons of some β1,4-glycoside hydrolases. Adv. Chem. Series 181: 361–374.

    Article  Google Scholar 

  32. Paice, M.G. and Jurasek, L. 1984. Removing hemicellulose from pulps by specific enzymic hydrolysis. J. Wood Chem. Tech. in press.

  33. Hulme, M.A. 1971. Viscometric determination of carboxymethyl-cellulase in standard international units. Arch. Biochem. Biophys. 147: 49–54.

    Article  CAS  Google Scholar 

  34. Weber, K. and Osborn, M. 1975. Proteins and sodium dodecyl sulfate:molecular weight determinations on polyacrylamide gels and relative procedure,p.179–233. In The Proteins Vol.1. H. Neurath R. L. Hill, and C. Boeder (eds.), Academic Press Inc., New York.

    Chapter  Google Scholar 

  35. Miller, G.L. 1963. Hydrolysis of cellulose to oligosaccharides. Methods Carbohydr. Chem. 3: 134–138.

    Google Scholar 

  36. Gum, E.K. Jr. and Brown, R.D. Jr. 1977. Two alternative hplc separation methods for reduced and normal cellooligosaccharides. Anal. Biochem. 82: 372–375.

    Article  CAS  Google Scholar 

  37. Liu, T.-Y. and Chang, Y.H. 1971. Hydrolysis of proteins with p-tolucnesulfonic acid. J. Biol. Chem. 248: 2842–2848.

    Google Scholar 

  38. Lottspeich, F., Geiger, R., Henschen, A. and Kutzbach, C. 1979. N-terminal amino acid sequence of human urinary kallikrein. Homology with other serine proteases. Hoppe-Seyler's Z. Physiol. Chem. 360: 1947–1950.

    CAS  Google Scholar 

  39. Mendez, E. and Lai, S.Y. 1975. Regeneration of amino acids from thiazolinones formed in the Edman degradation. Anal. Biochem. 68: 47–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paice, M., Desrochers, M., Rho, D. et al. Two Forms of Endoglucanase from the Basidiomycete Schizophyllum Commune and their Relationship to Other β-1,4-Glycoside Hydrolases. Nat Biotechnol 2, 535–539 (1984). https://doi.org/10.1038/nbt0684-535

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0684-535

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing