For decades, Chinese hamster ovary (CHO) cell lines have been the mammalian cell factory of choice for the production of recombinant protein drugs, particularly complex proteins. Drug makers and regulators alike have grown accustomed to the system, which reliably produces grams per liter of high-quality recombinant proteins, with appropriate post-translational modifications, such as glycosylation and correct folding. Despite extensive optimization—of genotype, expression vectors, process parameters and growth media—the CHO system remains cumbersome and expensive, however, resulting in long timelines and high production costs. Alternative production platforms, such as transgenic animals or plant-based expression systems, have been used over the last decade to produce protein drugs that reached the clinic (Nat. Biotechnol. 34, 117–119, 2016). So far, these approaches remain minority pursuits. A more generalized shake up in the production of monoclonal antibodies, for example, would reshape the economics of drug production.
Amyris cut its teeth engineering metabolic pathways in yeast to produce advanced biofuels based on isoprenoids, a class of branched hydrocarbons. It also engineered yeast to incorporate the plant mevalonate pathway for manufacturing a precursor of the malaria drug artemisinin. Amyris's automated platform transforms 'artisanal' genetic engineering routines into fully automated, parallel processes.
This is a preview of subscription content, access via your institution