Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Minimum information requested in the annotation of biochemical models (MIRIAM)

Abstract

Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models, it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  Google Scholar 

  2. Crampin, E. et al. Computational physiology and the physiome project. Exp. Physiol. 89, 1–26 (2004).

    Article  Google Scholar 

  3. Lloyd, C., Halstead, M. & Nielsen, P. CellML: its future, present and past. Prog. Biophys. Mol. Biol. 85, 433–450 (2004).

    Article  CAS  Google Scholar 

  4. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article  CAS  Google Scholar 

  5. Finney, A. & Hucka, M. Systems biology markup language: level 2 and beyond. Biochem. Soc. Trans. 31, 1472–1473 (2003).

    Article  CAS  Google Scholar 

  6. Le Novère, N., et al. BioModels Database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34, (2006).

  7. Campagne, F. et al. Quantitative information management for the biochemical computation of cellular networks. Sci. STKE 248, PL11 (2004).

    Google Scholar 

  8. Keseler, I. et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33, D334–D337 (2005).

    Article  CAS  Google Scholar 

  9. Olivier, B. & Snoep, J. Web-based kinetic modelling using JWS Online. Bioinformatics 20, 2143–2144 (2004).

    Article  CAS  Google Scholar 

  10. Salgado, H. et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res. 32, D303–D306 (2004).

    Article  CAS  Google Scholar 

  11. Sivakumaran, S., Hariharaputran, S., Mishra, J. & Bhalla, U. The database of quantitative cellular signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics 19, 408–415 (2003).

    Article  CAS  Google Scholar 

  12. Quackenbush, J. Data standards for 'omic' science. Nat. Biotechnol. 22, 613–614 (2004).

    Article  CAS  Google Scholar 

  13. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  CAS  Google Scholar 

  14. Hermjakob, H. et al. The HUPO PSI's molecular interaction format-a community standard for the representation of protein interaction data. Nat. Biotechnol. 22, 177–183 (2004).

    Article  CAS  Google Scholar 

  15. Lindon, J. et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 23, 833–838 (2005).

    Article  CAS  Google Scholar 

  16. Kacser, H. & Burns, J. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973).

    CAS  PubMed  Google Scholar 

  17. Savinell, J. & Palsson, B. Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. J. Theor. Biol. 155, 201–214 (1992).

    Article  CAS  Google Scholar 

  18. Thomas, R. Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973).

    Article  Google Scholar 

  19. Sánchez, L. & Thieffry, D. Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol. 224, 517–537 (2003).

    Article  Google Scholar 

  20. Laubenbacher, R. & Stigler, B. A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229, 523–537 (2004).

    Article  CAS  Google Scholar 

  21. Doi, A., Fujita, S., Matsuno, H., Nagasaki, M. & Miyano, S. Constructing biological pathway models with hybrid functional petri nets. In Silico Biol. 4, 271–291 (2003).

    Google Scholar 

  22. Cuellar, A., Nelson, M. & Hedley, W. The CellML metadata 1.0 specification. http://www.cellml.org/specifications/metadata/.

  23. Le Novère, N. & Finney, A. A simple scheme for annotating SBML with references to controlled vocabularies and database entries. http://www.ebi.ac.uk/compneur-srv/sbml/proposals/AnnotationURI.pdf.

  24. Berners-Lee, T., Fielding, R. & Masinter, L. Uniform resource identifier (URI): Generic syntax. http://www.gbiv.com/protocols/uri/rfc/rfc3986.html.

  25. Berners-Lee, T. Uniform resource locators (URL): a syntax for the expression of access information of objects on the network. http://www.w3.org/Addressing/URL/url-spec.txt.

  26. Moats, R. URN syntax. http://www.ietf.org/rfc/rfc2141.txt.

  27. Martin, S., Niemi, M. & Senger, M. Life sciences identifiers RFP response. http://www.omg.org/technology/documents/formal/life_sciences.htm

  28. Apweiler, R. et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004).

    Article  CAS  Google Scholar 

  29. Hubbard, T. et al. The Ensembl genome database project. Nucleic Acids Res. 30, 38–41 (2002).

    Article  CAS  Google Scholar 

  30. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  31. Hamosh, A., Scott, A., Amberger, J., Bocchini, C. & McKusick, V. Online mendelian inheritance in man ({OMIM}), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–D517 (2005).

    Article  CAS  Google Scholar 

  32. Wheeler, D. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 28, 10–14 (2000).

    Article  CAS  Google Scholar 

  33. Phan, I., Pilbout, S., Fleischmann, W. & Bairoch, A. NEWT, a new taxonomy portal. Nucleic Acids Res. 31, 3822–3823 (2003).

    Article  CAS  Google Scholar 

  34. Mulder, N.J. et al. InterPro, progress and status in 2005. Nucleic Acids Res. 33, 201–205 (2005).

    Article  Google Scholar 

  35. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).

    Article  CAS  Google Scholar 

  36. Wu, C. et al. PIRSF: family classification system at the protein information resource. Nucleic Acids Res. 32, D112–D114 (2004).

    Article  CAS  Google Scholar 

  37. Joshi-Tope, G. et al. The genome knowledgebase: A resource for biologists and bioinformaticists. Cold Spring Harb. Symp. Quant. Biol. 68, 237–243 (2003).

    Article  CAS  Google Scholar 

  38. Bader, G. & Hogue, C. BIND—a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16, 465–477 (2000).

    Article  CAS  Google Scholar 

  39. Hermjakob, H. et al. IntAct—an open source molecular interaction database. Nucleic Acids Res. 32, D452–D455 (2004).

    Article  CAS  Google Scholar 

  40. Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    Article  CAS  Google Scholar 

  41. Wu, C. et al. Update on genome completion and annotations: protein information resource. Nucleic Acids Res. 31, 345–347 (2003).

    Article  Google Scholar 

  42. Fleischmann, A. et al. IntEnz, the integrated relational enzyme database. Nucleic Acids Res. 32, D434–D437 (2004).

    Article  CAS  Google Scholar 

  43. Bairoch, A. The ENZYME database in 2000. Nucleic Acids Res. 28, 304–305 (2000).

    Article  CAS  Google Scholar 

  44. Bower, J. & Beeman, D. The Book of GENESIS (Springer-Verlag, New York, 1998).

    Book  Google Scholar 

  45. Ermentrout, B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (Society for Industrial & Applied Math, Philadelphia, PA, 2002).

    Book  Google Scholar 

  46. Chabrier, N. & Fages, F. Symbolic model checking of biochemical networks. in International Workshop on Computational Methods in Systems Biology (Springer-Verlag, New York, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Le Novère.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novère, N., Finney, A., Hucka, M. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23, 1509–1515 (2005). https://doi.org/10.1038/nbt1156

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing