Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Isolation of an Alanine Racemase Gene from Bacillus subtilis and its Use for Plasmid Maintenance in B. subtilis

Abstract

The ability to synthesize D-alanine is essential for the biosynthesis of cell walls of most bacteria. D-alanine is normally produced by racemization of L-alanine; in the absence of a functional alanine racemase, D-alanine must be provided for cell growth. An alanine racemase gene has been isolated from Bacillus subtilis. When this gene is placed on a multicopy plasmid in B. subtilis it can complement a chromosomal deletion of the alanine racemase gene. The presence of the alanine racemase gene on a plasmid provides strong selective pressure for maintenance of the plasmid in a strain lacking a functional alanine racemase. This selective pressure can be used instead of antibiotics to maintain plasmids in B. subtilis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ferrari, E. and Hoch, J.A. 1983. A single copy transducible system for complementation and dominance analysis in Bacillus subtilis. Molec. Gen. Genet. 189: 321–325.

    Article  CAS  Google Scholar 

  2. Chang, S., Ho, D., Gray, O., Chang, S.-Y. and McLaughlin, J. 1983. Functional expression of human interferon genes and construction of a partition proficient plasmid vector in B. subtilis, pp 227–231. In: Genetics of Industrial Microorganisms. Y. Ikeda and T. Beppu (eds.) Kodansha Ltd, Tokyo, Japan.

    Google Scholar 

  3. Tanaka, T. and Sakaguchi, K. 1978. Construction of a recombinant plasmid composed of B. subtilis leucine genes and a B. subtilis (natto). plasmid: Its use as cloning vehicle in B. subtilis 168. Mol. Gen. Genet. 165: 269–276.

    Article  CAS  Google Scholar 

  4. Mandelstam, J., McQuillen, K. and Dawes, I. 1982. Biochemistry of Bacterial Growth, 3rd edition, p. 57. John Wiley and Sons, New York.

    Google Scholar 

  5. Berberich, B., Kaback, M. and Freese, E. 1968. D-amino acids as inducers of L-alanine dehydrogenase in Bacillus subtilis. J. Biol. Chem. 243: 1006–1011.

    CAS  PubMed  Google Scholar 

  6. Buxton, R.S. and Ward, J.B. 1980. Heat-sensitive lysis mutants of Bacillus subtilis 168 blocked at three different stages of peptidiglycan synthesis. J. Gen. Microbiol. 120: 283–293.

    CAS  PubMed  Google Scholar 

  7. Lund, T., Grosveld, F.G. and Flavell, R.A. 1982. Isolation of transforming DNA by cosmid rescue. Proc. Natl. Acad. Sci. USA. 79: 520–524.

    Article  CAS  Google Scholar 

  8. Youngman, P., Perkins, J.B. and Losick, R. 1984. A novel method for rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol. Gen. Genet. 195: 424–433.

    Article  CAS  Google Scholar 

  9. Yang, M.Y., Ferrari, E. and Henner, D.J. 1984. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Band, L. and Henner, D.J. 1984. Bacillus subtilis requires a “stringent” Shine-Dalgarno region for gene expression. DNA 3: 17–21.

    Article  CAS  Google Scholar 

  11. Murray, C.L. and Rabinowitz, J.C. 1982. Nucleotide sequences of transcription and translation initiation regions in Bacillus phage φ29 early genes. J. Biol. Chem. 257: 1053–1062.

    CAS  PubMed  Google Scholar 

  12. Wasserman, S.A., Daub, E., Grisafi, P., Botstein, D. and Walsh, C.T. 1984. Catabolic alanine racemase from Salmonella typhimurium DNA sequence, enzyme purification and characterization. Biochem. 23: 5182–5187.

    Article  CAS  Google Scholar 

  13. Wasserman, S.A., Walsh, C.T. and Botstein, D. 1983. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J. Bacteriol. 153: 1439–1450.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wild, J., Hennig, J., Lobocka, M., Walczak, W. and Klopotowski, T. 1985. Identification of the dadX gene coding for the predominant isoenzyme of alanine racemase in Escherichia coli K-12. Molec. Gen. Genet. 198: 315–322.

    Article  CAS  Google Scholar 

  15. Freese, E., Park, S.W. and Cashel, M. . 1964. The developmental significance of alanine-dehydrogenase in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 51: 1164–1172.

    Article  CAS  Google Scholar 

  16. Dagert, M. and Ehrlich, S.D. 1979. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6: 23–28.

    Article  CAS  Google Scholar 

  17. Anagnostopoulos, C. and Spizizen, J. 1961. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81: 741–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoch, J.A., Barat, M. and Anagnostopoulos, C. 1967. Transformation and transduction in recombination-defective mutants of Bacillus subtilis. J. Bacteriol. 93: 1925–1937.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrari, F.A., Nguyen, A., Lang, D. and Hoch, J.A. 1983. Construction and properties of an integrable plasmid for Bacillus subtilis. J. Bacteriol. 154: 1513–1514.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513–1523.

    Article  CAS  Google Scholar 

  21. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208–218.

    Article  CAS  Google Scholar 

  22. Lawn, R.M., Adelman, J., Bock, S.C., Franke, A.E., Houck, C.M., Najarian, R.C., Seeburg, P.H. and Wion, K.L. 1981. The sequence of human serum albumin cDNA and its expression in E. coli. Nucleic Acids Res. 9: 6103–6114.

    Article  CAS  Google Scholar 

  23. Wahl, G.M., Stern, M. and Stark, G.R. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxy-methyl-paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. Sci. USA. 76: 3683–3687.

    Article  CAS  Google Scholar 

  24. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  CAS  Google Scholar 

  25. Rigby, P.W.J., Dieckmann, M., Rhodes, C. and Berg, P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113: 237–251.

    Article  CAS  Google Scholar 

  26. Maniatis, T., Jeffrey, A. and Kleid, D.G. 1975. Nucleotide sequence of the rightward operator of phage λ. Proc. Natl. Acad. Sci. USA 72: 1184–1188.

    Article  CAS  Google Scholar 

  27. Messing, J. and Vieira, J. 1982. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19: 269–276.

    Article  CAS  Google Scholar 

  28. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, E., Henner, D. & Yang, M. Isolation of an Alanine Racemase Gene from Bacillus subtilis and its Use for Plasmid Maintenance in B. subtilis. Nat Biotechnol 3, 1003–1007 (1985). https://doi.org/10.1038/nbt1185-1003

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1185-1003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing