Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Gene Replacement in Bordetella pertussis by Transformation with Linear DNA

Abstract

We replaced the wild-type TOX operon of Bordetella pertussis with in vitro mutated, detoxified alleles by electroporetic transformation using unmarked linear DNA. Uptake of DNA was selected by transient ampicillin resistance and two simultaneous recombination events resulted in gene-replacement at the natural locus with no integration of heterologous DNA. TOX alleles were stable without selection and recombinant strains secreted non-toxic, fully assembled, protective pertussis toxin (PT) analogues with kinetics similar to the parental vaccine strain under production-scale fermentation conditions. Strains generated in this way are suitable for the production of recombinant whole-cell or component whooping cough vaccines that require no chemical modification of PT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fine, P.E.M. and Clarkson, A. 1987. Reflections on the efficacy of pertussis vaccines. Rev. Infect. Dis 9: 866–883.

    Article  CAS  PubMed  Google Scholar 

  2. Ross, E.M. 1988. Reactions to whole-cell pertussis vaccine, p. 375–393. In: Pathogenesis and Immunity in Pertussis. A. C. Wardlaw and R. Parton (Eds.). John Wiley, Toronto.

    Google Scholar 

  3. Robinson, A. and Ashworth, L.A.E. 1988. Acellular and defined-component vaccines against pertussis, p. 399–417. In: Pathogenesis and Immunity in Pertussis. A. C. Wardlaw and R. Parton (Eds.). John Wiley, Toronto.

    Google Scholar 

  4. Pittman, M. 1984. The concept of pertussis as a toxin-mediated disease. Pediatr. Infect. Dis. 3: 467–486.

    Article  CAS  PubMed  Google Scholar 

  5. Tamura, M., Nogimori, K., Murai, S., Yajima, M., Ito, K., Katada, T., Ui, M. and Ishii, S. 1982. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21: 5516–5522.

    Article  CAS  PubMed  Google Scholar 

  6. Munoz, J.J., Arai, H. and Cole, R.L. 1981. Mouse-protecting and histamine sensitizing activities of pertussigen and fimbrial hemagglutinin from Bordetella pertussis. Infect. Immun. 32: 243–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Locht, C. and Keith, J.M. 1986. Pertussis toxin gene: nucleotide sequence and genetic organization. Science 232: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  8. Nicosia, A., Perugini, M., Franzini, C., Casaligi, C., Borri, M.G., Antoni, M., Almoni, M., Neri, P., Ratti, G. and Rappuoli, R. 1986. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc. Natl. Acad. Sci. U.S.A. 83: 4631–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loosmore, S.M., Cunningham, J.D., Bradley, W.R., Yao, F.-L., Dekaban, G.A. and Klein, M.H. 1989. A unique sequence of the Bordetella pertussis toxin operon. Nucleic. Acids Res. 17: 8365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cockle, S.A. 1989. Identification of an active-site residue in subunit S1 of pertussis toxin by photocrosslinking to NAD. FEBS Letts. 249: 329–332.

    Article  CAS  Google Scholar 

  11. Cieplak, W., Burnette, W.N., Mar, V.L., Kaljot, K.T., Morris, C.F., Chen, K.K., Sato, H. and Keith, J.M. 1988. Identification of a region of S1 that is required for enzymatic activity and that contributes to the formation of a neutralizing antigenic determinant. Proc. Natl. Acad. Sci. U.S.A. 85: 4667–4671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pizza, M., Bartoloni, A., Prugnola, A., Silvestri, S. and Rappuoli, R. 1988. Subunit S1 of pertussis toxin: mapping of the regions essential for the ADP-ribosyltransferase activity. Proc. Natl. Acad. Sci. U.S.A. 85: 7521–7525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbieri, J.T. and Cortina, G. 1988. ADP-ribosyltransferase mutations in the catalytic subunit of pertussis toxin. Infect. Immun. 56: 1934–1941.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zealey, G., Loosmore S., Cockle, S., Boux, H., Radika, K., Yacoob, R., Chong, P., Yao, F.-L. and Klein, M. 1989. p. 259–263. Construction of Bordetella pertussis strains that secrete inactive pertussis toxin analogs. In: Vaccines 89, Modern Approaches to New Vaccines Including the Prevention of AIDS. R. A. Lerner, H. Ginsberg, R. M. Chanock, and F. Brown (Eds.). Cold Spring Harbor, New York.

    Google Scholar 

  15. Pizza, M., Covacci, A., Bartoloni, A., Perugini, M., Nencioni, L., De Magistris, M.T., Villa, L., Nucci, D., Manetti, R., Bugnoli, M., Giovannoni, F., Olivieri, R., Barbieri, J.T., Sato, H. and Rappuoli, R. 1989. Mutants of pertussis toxin suitable for vaccine development. Science 246: 497–499.

    Article  CAS  PubMed  Google Scholar 

  16. Nencioni, L., Pizza, M., Bugnoli, M., De Magistris, T., Di Tommaso, A., Giovannoni, F., Manetti, R., Marsili, L., Matteucci, G., Nucci, D., Olivieri, R., Pileri, P., Presentini R., Villa, L., Kreeftenberg, J.G., Silvestri, S., Tagliabue, A. and Rappuoli, R. 1990. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough. Infect. Immun. 58: 1308–1315.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Loosmore, S.M., Zealey, G.R., Boux, H.A., Cockle, S.A., Radika, K., Fahim, R.E.F., Zobrist, G.J., Yacoob, R.K., Chong, P.C.-S., Yao, F.-L. and Klein, M.H. 1990. Engineering of genetically-detoxified pertussis toxin analogues for the development of a recombinant whooping cough vaccine. Infect. Immun. In press.

    Google Scholar 

  18. Ditta, G., Schmidhauser, T., Yakobson, E., Lu, P., Liang, X.-W., Finlay, D., Guiney, D. and Helinski, D. 1985. Plasmids related to the broad host range vector pRK290, useful for monitoring gene expression. Plasmid 13: 149–153.

    Article  CAS  PubMed  Google Scholar 

  19. Dean, D. 1981. A plasmid vector for the direct selection of strains carrying recombinant plasmids. Gene 15: 99–102.

    Article  CAS  PubMed  Google Scholar 

  20. Stibitz, S., Black, W. and Falkow, S. 1986. The construction of a cloning vector designed for gene replacement in Bordetella pertussis. Gene 50: 133–140.

    Article  CAS  PubMed  Google Scholar 

  21. Park, C. and Hazelebauer, G.L. 1986. Transfer of chromosomal mutations to plasmids via Hfr-mediated conduction. J. Bacteriol. 165: 312–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiel, J.A.K.W., Vossen, J.P.M.J. and Venema, G. 1987. A general method for the construction of Escherichia coli mutants by homologous recombination and plasmid segregation. Mol. Gen. Genet. 207: 294–301.

    Article  CAS  PubMed  Google Scholar 

  23. Liljestrom, P., Pirhonen, M. and Palva, E.T. 1985. In vivo transfer of chromosomal mutations onto multicopy plasmids by transduction with bacteriophage P1. Gene 40: 241–246.

    Article  CAS  PubMed  Google Scholar 

  24. Jason, M. and Schimmel, P. 1984. Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments. J. Bacteriol. 159: 783–786.

    Google Scholar 

  25. Zealey, G., Dion, M., Loosmore, S., Yacoob, R. and Klein, M. 1988. High frequency transformation of Bordetella by electroporation. FEMS Microbiol. Lett. 56: 23–126.

    Article  Google Scholar 

  26. Chassy, B.M., Mercenier, A. and Flickinger, J. 1988. Transformation of bacteria by electroporation. Trends in Biotech. 6: 303–309.

    Article  CAS  Google Scholar 

  27. Imaizumi, A., Suzuki, Y., Ono, S., Sato, H. and Sato, Y. 1983. Effect of heptakis(2,6-O-dimethyl)β-cyclodextrin on the production of pertussis toxin by Bordetella pertussis. Infect. Immun. 41: 1138–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ish-Horowicz, D. and Burke, J.F. 1988. Rapid and efficient cosmid cloning. Nucleic Acids Res. 9: 2989–2998.

    Article  Google Scholar 

  29. Yacoob, R.Y. and Zealey, G.R. 1988. A one-step procedure for the purification of high molecular weight bacterial chromosomal DNA. Nucleic Acids Res. 16: 1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  31. Tan, U.L., Fahim, E.F.F., Jackson, G., Phillips, K., Wah, P., Alkema, D., Zobrist, G., Herbert, A., Boux, L., Chong, P., Harjee, N., Klein, M. and Vose, J. 1990. A novel process for preparing an acellular pertussis vaccine composed of nonpyrogenic toxoids of pertussis toxin and filamentous hemagglutinin. Molec. Immunol. In press.

    Google Scholar 

  32. Burns, D.L., Kenimer, J.G. and Manclark, C.R. 1987. Role of the A subunit of pertussis toxin in alteration of Chinese Hamster Ovary cell morphology. Infect. Immun. 55: 24–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Watkins, P.A., Burns, D.L., Kanaho, Y., Liu, T.-Y., Hewlett, E.L. and Moss, J. 1985. ADP-ribosylation of transducin by pertussis toxin. J. Biol. Chem. 260: 13478–13482.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zealey, G., Loosmore, S., Yacoob, R. et al. Gene Replacement in Bordetella pertussis by Transformation with Linear DNA. Nat Biotechnol 8, 1025–1029 (1990). https://doi.org/10.1038/nbt1190-1025

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1190-1025

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing