Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Large Scale, In Situ Isolation of Periplasmic IGF–I from E. coli

Abstract

Human insulin–like growth factor I (IGF–I) accumulates in both folded and aggregated forms in the fermentation medium and cellular periplasmic space when expressed in E. coli with an endogenous secretory signal sequence. Due to its heterogeneity in form and location, low yield of IGF–I was obtained using a typical refractile body recovery strategy. To enhance recovery yield, a new procedure was developed to solubilize and extract IGF–I from cells while in fermentation broth. This method, called in situ solubilization, involves addition of chaotrope and reductant to alkaline fermentation broth and provides recovery of about 90% of all IGF–I in an isolated supernatant. To further enhance recovery, a new aqueous two–phase extraction procedure was developed which partitions soluble non–native IGF–I and biomass solids into separate liquid phases. This two–phase extraction procedure involves addition of polymer and salt to the solubilization mixture and provides about 90% recovery of solubilized IGF–I in the light phase. The performance of the solubilization and aqueous extraction procedures is reproducible at scales ranging from 10 to 1000 liters and provides a 70% cumulative recovery yield of IGF–I in the isolated light phase. The procedure provides significant initial IGF–I purification since most host proteins remain cell associated during solubilization and are enriched in heavy phase. ELISA analysis for E. coli proteins indicates that 97% of the protein in the light phase is IGF–I. Together, the techniques of in situ solubilization and aqueous two–phase extraction provide a new, high yield approach for isolating recombinant protein which is accumulated in more than one form during fermentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilkinson, D.L. and Harrison, R.G. 1991. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology 9: 443–448.

    CAS  Google Scholar 

  2. Mitraki, A. and King, J. 1989. Protein folding intermediates and inclusion body formation. Bio/Technology 7: 690–697.

    CAS  Google Scholar 

  3. Kiefhaber, T., Rudolph, R., Kohler, H.-H. and Buchner, J. 1991. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Bio/Technology 9: 825–829.

    CAS  Google Scholar 

  4. Kane, J.F. and Hartley, D.L. 1988. Formation of recombinant protein inclusion bodies in Escherichia coli. TIBTECH 6: 95–101.

    Article  CAS  Google Scholar 

  5. Schein, C.H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  6. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6: 291–294.

    CAS  Google Scholar 

  7. Kopetzki, E., Schumacher, G. and Buckel, P. 1989. Control of formation of active soluble or inactive insoluble bakers yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Mol. Gen. Genet. 216: 149–155.

    Article  CAS  PubMed  Google Scholar 

  8. Strandberg, L. and Enfors, S. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microb. 57: 1669–1674.

    CAS  Google Scholar 

  9. Gardiner, S.A.M., Olbrich, R., Marston, F.A.O., Fish, N.M. and Hoare, M. 1987. Process design for recombinant protein recovery from inclusion bodies, p. 541–544. In: Proc. 4th European Congress on Biotechnology, Vol. 2. Neijssel, O. M., van der Meer, R. R. and Luyben, K. C. A. M. (Eds.). Elsevier Science Publishers B. V., Amsterdam, Netherlands.

    Google Scholar 

  10. Fish, N.M. and Hoare, M. 1988. Recovery of protein inclusion bodies. Bio-chem. Soc. Trans. 16: 102–104.

    Article  CAS  Google Scholar 

  11. Taylor, G., Hoare, M., Gray, D.R. and Marston, F.A.O. 1986. Size and density of protein inclusion bodies. Bio/Technology 4: 553–557.

    CAS  Google Scholar 

  12. Bowden, G.A., Paredes, A.M. and Georgiou, G. 1991. Structure and morphology of protein inclusion bodies in Escherichia coli. Bio/Technology 9: 725–730.

    CAS  Google Scholar 

  13. Marston, F.A.O. and Hartley, D.L. 1990. Solubilization of protein aggregates. Meth. Enzym. 182: 264–276.

    Article  CAS  PubMed  Google Scholar 

  14. Hart, R.A., Ogez, J.R. and Builder, S.E. 1994. Aqueous two-phase systems for isolation of non-native IGF-I. Submitted to Bioseparations

  15. Hettwer, D. and Wang, H. 1989. Protein release from Escherichia coli cells permeabilized with guanidine-HC1 and Triton X-100. Biotech. Bioeng. 33: 886–895.

    Article  CAS  Google Scholar 

  16. Harrison, S.T.L., Dennis, J.S. and Chase, H.A. 1991. Combined chemical and mechanical processes for the disruption of bacteria. Bioseparation 2: 95–105.

    CAS  PubMed  Google Scholar 

  17. Kula, M., Kroner, K.H. and Hustedt, H. 1982. Purification of enzymes by liquid-liquid extraction. Adv. Biochem. Eng. 24: 73–118.

    CAS  Google Scholar 

  18. Langley, K.E., Berg, T.F., Strickland, T.W., Fenton, D.M., Boone, T.C. and Wypych, J. 1987. Recombinant-DNA-derived bovine growth hormone from Escherichia coli. Eur. J. Biochem. 163: 313–321.

    Article  CAS  PubMed  Google Scholar 

  19. Marston, F.A.O., Lowe, P.A., Doel, M.T., Schoemaker, J.M., White, S. and Angal, S. 1984. Purification of calf prochymosin (prorennin) synthesized in Escherichia coli. Bio/Technology 2: 800–804.

    CAS  Google Scholar 

  20. Schoner, R.G., Ellis, L.F. and Schoner, B.E. 1985. Isolation and purification of protein granules from Escherichia coli cells overproducing bovine growth hormone. Bio/Technology 3: 151–154.

    Article  CAS  Google Scholar 

  21. Hart, R.A., Rinas, U. and Bailey, J.E. 1990. Protein composition of Vitreos-cilla hemoglobin inclusion bodies produced in Escherichia coli. J. Biol. Chem. 265: 12728–12733.

    CAS  PubMed  Google Scholar 

  22. Veeraragavan, K. 1989. Studies on two major contaminating proteins of the cytoplasmic inclusion bodies in Escherichia coli. FEMS Microb. Lett. 61: 149–152.

    Article  CAS  Google Scholar 

  23. Schnaitman, C.A. 1971. Effect of ethylenediaminetetraacetic acid, triton X-100, and lysozyme on the morphology and chemical composition of isolated cell walls of Escherichia coli. J. Bact. 108: 553–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Babbitt, P.C., West, B.L., Buechter, D.D., Kuntz, I.D. and Kenyon, G.L. 1990. Removal of a proteolytic activity associated with aggregates formed from expression of creatine kinase in Escherichia coli leads to improved recovery of active enzyme. Bio/Technology 8: 945–949.

    CAS  Google Scholar 

  25. Cole, K.D. 1991. Purification of plasmid and high molecular mass DNA using PEG-salt two-phase extraction. Bio/Techniques 11: 18–24.

    CAS  Google Scholar 

  26. Axelsson, H.A.C. 1985. Centrifugation, p. 325–346. In: Comprehensive Biotechnology. Cooney, C. L. and Humphrey, A. E. (Eds.). Pergamon Press, New York, NY.

    Google Scholar 

  27. Kula, M. 1985. Liquid-liquid extraction of biopolymers, p. 451–471. In: Comprehensive Biotechnology, Vol 2. Cooney, C. L. and Humphrey, A. E. (Eds.). Pergamon Press, New York, NY.

    Google Scholar 

  28. Hart, R.A., Lester, P.M., Reifsnyder, D.H., Ogez, J.R. and Builder, S.E. 1994. Effect of environment on IGF-I refolding selectivity. Biotechnol. Appl. Biochem. In press.

    Google Scholar 

  29. Cleland, J.L., Builder, S.E., Swartz, J.R., Winkler, M., Chang, J.Y. and Wand, D.I.C. 1992. Polyethylene glycol enhanced protein refolding. Bio/Technology 10: 1013–1019.

    CAS  Google Scholar 

  30. Cleland, J.L. and Randolph, T.W. 1992. Mechanism of polyethylene glycol interaction with the molten globule folding intermediate of bovine carbonic anhydrase B. J. Biol. Chem. 267: 3147–3153.

    CAS  PubMed  Google Scholar 

  31. Spolar, R.S., Ha, J.-H. and Record, M.T. 1989. Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc. Natl. Acad. Sci. USA 86: 8382–8385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eiteman, M.A. and Gainer, J.L. 1990. Peptide hydrophobicity and partitioning in poly (ethylene glycol)/magnesium sulfate aqueous two-phase systems. Biotechnol. Prog. 6: 479–484.

    Article  CAS  PubMed  Google Scholar 

  33. Diamond, A.D., Yu, K. and Hsu, J.T. 1990. Peptide and protein partitioning in aqueous two-phase systems, p. 52–65. In: Protein Purification: From Molecular Mechanisms to Large Scale Processes. Ladisch, M. R., Wilson, R. C., Paiton, C. C. and Builder, S. E. (Eds.). A. C. S. Symposium Series, American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  34. Cole, K.D. 1992. Salt-PEG two-phase aqueous systems to purify proteins and nucleic acid mixtures, p. 340–351. In: Frontiers in Bioprocessing II. Todd, P., Sikdar, S. K. and Bier, M. (Eds.). A. C. S. Symposium Series, American Chemical Society, Washington, DC.

    Google Scholar 

  35. Bozzola, J.J. and Russell, L.D. 1992. Electron Microscopy, Principles and Techniques for Biologists. Jones and Bartlett, Boston, MA.

    Google Scholar 

  36. Chang, J.Y., McFarland, N.C. and Swartz, J.R. 1994. Method for refolding insoluble, misfolded insulin-like growth factor-I into an active conformation. U. S. Patent 5,288,931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, R., Lester, P., Reifsnyder, D. et al. Large Scale, In Situ Isolation of Periplasmic IGF–I from E. coli. Nat Biotechnol 12, 1113–1117 (1994). https://doi.org/10.1038/nbt1194-1113

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1194-1113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing