Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Systems biology and the host response to viral infection

Will our increasing understanding of virus-host interactions translate into a new generation of antiviral therapeutics or steer us toward an expensive journey to nowhere?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Example highlighting the distinct mechanisms of antiviral actions by pharmacological inhibitors of cellular cyclin-dependent kinases (CDKs) compared to conventional antiviral drugs.
Figure 3: Functional relationships of activated of cell death responses during r1918 influenza virus infection.

References

  1. Noble, D. The Music of Life: Biology Beyond the Genome (Oxford University Press, New York, 2006).

    Google Scholar 

  2. Salerno, D. et al. Direct inhibition of CDK9 blocks HIV-1 replication without preventing T-cell activation in primary human peripheral blood lymphocytes. Gene 405, 65–78 (2007).

    Article  CAS  Google Scholar 

  3. Schang, L.M. First demonstration of the effectiveness of inhibitors of cellular protein kinases in antiviral therapy. Expert Rev. Anti Infect. Ther. 4, 953–956 (2006).

    Article  CAS  Google Scholar 

  4. de Angelis, D.S., Freire, W.S., Pannuti, C.S., Succi, R.C. & Machado, D.M. CCR5 genotypes and progression to HIV disease in perinatally infected children. Braz. J. Infect. Dis. 11, 196–198 (2007).

    Article  Google Scholar 

  5. Wheeler, J., McHale, M., Jackson, V. & Penny, M. Assessing theoretical risk and benefit suggested by genetic association studies of CCR5: experience in a drug development programme for maraviroc. Antivir. Ther. 12, 233–245 (2007).

    CAS  PubMed  Google Scholar 

  6. Tan, S.L., He, Y., Huang, Y. & Gale, M. Jr. Strategies for hepatitis C therapeutic intervention: now and next. Curr. Opin. Pharmacol. 4, 465–470 (2004).

    Article  CAS  Google Scholar 

  7. Horsmans, Y. et al. Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology 42, 724–731 (2005).

    Article  CAS  Google Scholar 

  8. Lee, J. et al. Activation of anti-hepatitis C virus responses via Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 103, 1828–1833 (2006).

    Article  CAS  Google Scholar 

  9. Vanwolleghem, T. et al. Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse. Gastroenterology 133, 1144–1155 (2007).

    Article  CAS  Google Scholar 

  10. ViroPharma Inc. Potential Safety Issue Identified in Ongoing Phase 2 Clinical Study of HCV-796 (press release) (ViroPharma Inc., Exton, Pennsylvania, USA, 2007).

  11. Davidov, E., Holland, J., Marple, E. & Naylor, S. Advancing drug discovery through systems biology. Drug Discov. Today 8, 175–183 (2003).

    Article  CAS  Google Scholar 

  12. Butcher, E.C., Berg, E.L. & Kunkel, E.J. Systems biology in drug discovery. Nat. Biotechnol. 22, 1253–1259 (2004).

    Article  CAS  Google Scholar 

  13. Gibbs, R.A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007).

    Article  CAS  Google Scholar 

  14. Wallace, J.C. et al. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations. BMC Genomics 8, 28 (2007).

    Article  Google Scholar 

  15. Tumpey, T.M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    Article  CAS  Google Scholar 

  16. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323 (2007).

    Article  CAS  Google Scholar 

  17. Walters, K.A. et al. Application of functional genomics to the chimeric mouse model of HCV infection: optimization of microarray protocols and genomics analysis. Virol. J. 3, 37–44 (2006).

    Article  Google Scholar 

  18. Kash, J.C. et al. Global suppression of the host antiviral response by Ebola- and Marburgviruses: increased antagonism of the type 1 interferon response is associated with enhanced virulence. J. Virol. 80, 3009–3020 (2006).

    Article  CAS  Google Scholar 

  19. Fredericksen, B.L., Smith, M., Katze, M.G., Shi, P.Y. & Gale, M. Jr. The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J. Virol. 78, 7737–7747 (2004).

    Article  CAS  Google Scholar 

  20. Baas, T., Taubenberger, J., Chong, P.Y., Chui, P. & Katze, M.G. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. J. Interferon Cytokine Res. 26, 309–317 (2006).

    Article  CAS  Google Scholar 

  21. Pasieka, T.J. et al. Functional genomics analysis of herpes simplex virus type 1 counteraction of the host innate response. J. Virol. 80, 7600–7612 (2006).

    Article  CAS  Google Scholar 

  22. Li, Y., Chan, E.Y. & Katze, M.G. Functional genomics analyses of differential macaque peripheral blood mononuclear cell infections by human immunodeficiency virus-1 and simian immunodeficiency virus. Virology 366, 137–149 (2007).

    Article  CAS  Google Scholar 

  23. Wallace, J.C., Korth, M.J., Diamond, D.L., Proll, S.C. & Katze, M.G. Virology in the 21st century: finding function with functional genomics. Future Virol. 1, 47–53 (2006).

    Article  CAS  Google Scholar 

  24. Diamond, D.L. et al. Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology 46, 649–657 (2007).

    Article  CAS  Google Scholar 

  25. Bandyopadhyay, S., Kelley, R. & Ideker, T. Discovering regulated networks during HIV-1 latency and reactivation. Pac. Symp. Biocomput. 11, 354–366 (2006).

    Google Scholar 

  26. Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 311, 239–242 (2006).

    Article  CAS  Google Scholar 

  27. Chan, L.Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005).

    Article  Google Scholar 

  28. Bartee, E., McCormack, A. & Fruh, K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2, e107 (2006).

    Article  Google Scholar 

  29. Bentwich, I. Bioinformatically detectable group of novel HIV regulatory genes and uses thereof. US Patent 7,217,807 (2007).

  30. Burnside, J. et al. Marek's disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J. Virol. 80, 8778–8786 (2006).

    Article  CAS  Google Scholar 

  31. Cai, X. et al. Kaposi's sarcoma-associated herpes-virus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102, 5570–5575 (2005).

    Article  CAS  Google Scholar 

  32. Cui, C. et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 80, 5499–5508 (2006).

    Article  CAS  Google Scholar 

  33. Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005).

    Article  CAS  Google Scholar 

  34. Pfeffer, S. Identification of virally encoded microRNAs. Methods Enzymol. 427, 51–63 (2007).

    Article  CAS  Google Scholar 

  35. Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005).

    Article  CAS  Google Scholar 

  36. Grundhoff, A., Sullivan, C.S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpes-viruses. RNA 12, 733–750 (2006).

    Article  CAS  Google Scholar 

  37. Chan, E.Y. et al. Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J. Virol. 81, 7571–7583 (2007).

    Article  CAS  Google Scholar 

  38. Zhu, H., Cong, J.P., Mamtora, G., Gingeras, T. & Shenk, T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 14470–14475 (1998).

    Article  CAS  Google Scholar 

  39. Moses, A.V. et al. A functional genomics approach to Kaposi's sarcoma. Ann. NY Acad. Sci. 975, 180–191 (2002).

    Article  CAS  Google Scholar 

  40. Chun, T.W. et al. Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc. Natl. Acad. Sci. USA 100, 1908–1913 (2003).

    Article  CAS  Google Scholar 

  41. Sakamoto, H. et al. Host sphingolipid biosynthesis as a target for hepatitis C virus therapy. Nat. Chem. Biol. 1, 333–337 (2005).

    Article  CAS  Google Scholar 

  42. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

    Article  CAS  Google Scholar 

  43. Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947 (2007).

    Article  CAS  Google Scholar 

  44. Foulkes, A.S. et al. Associations among race/ethnicity, ApoC-III genotypes, and lipids in HIV-1-infected individuals on antiretroviral therapy. PLoS Med. 3, e52 (2006).

    Article  Google Scholar 

  45. Haas, D.W. Human genetic variability and HIV treatment response. Curr. HIV/AIDS Rep. 3, 53–58 (2006).

    Article  Google Scholar 

  46. Dahri, K. & Ensom, M.H. Efavirenz and nevirapine in HIV-1 infection: is there a role for clinical pharmaco-kinetic monitoring? Clin. Pharmacokinet. 46, 109–132 (2007).

    Article  CAS  Google Scholar 

  47. Wright, M., Grieve, R., Roberts, J., Main, J., & Thomas, H.C. Health benefits of antiviral therapy for mild chronic hepatitis C: randomised controlled trial and economic evaluation. Health Technol. Assess. 10, 1–113, iii (2006).

    Article  CAS  Google Scholar 

  48. Xie, Y. et al. Predictive factors for sustained response to interferon treatment in patients with chronic hepatitis C: a randomized, open, and multi-center controlled trial. Hepatobiliary Pancreat. Dis. Int. 4, 213–219 (2005).

    CAS  PubMed  Google Scholar 

  49. Angulo, M. & Carvajal-Rodriguez, A. Evidence of recombination within human alpha-papillomavirus. Virol. J. 4, 33–40 (2007).

    Article  Google Scholar 

  50. Ding, X.R., Yang, J., Sun, D.C., Lou, S.K. & Wang, S.Q. Whole genome expression profiling of hepatitis B virus-transfected cell line reveals the potential targets of anti-HBV drugs. Pharmacogenomics. J. published online (15 May 2007). doi:10.1038/sj.tpj.6500459

    Article  Google Scholar 

  51. Damm, E.M. & Pelkmans, L. Systems biology of virus entry in mammalian cells. Cell. Microbiol. 8, 1219–1227 (2006).

    Article  CAS  Google Scholar 

  52. Silver, P.A. & Way, J.C. Molecular systems biology in drug development. Clin. Pharmacol. Ther. 82, 586–590 (2007).

    Article  CAS  Google Scholar 

  53. Giuliano, K.A., Johnston, P.A., Gough, A. & Taylor, D.L. Systems cell biology based on high-content screening. Methods Enzymol. 414, 601–619 (2006).

    Article  CAS  Google Scholar 

  54. Piwnica-Worms, D., Schuster, D.P. & Garbow, J.R. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol. 6, 319–331 (2004).

    Article  CAS  Google Scholar 

  55. He, M.L. et al. Inhibition of SARS-associated coronavirus infection and replication by RNA interference. JAMA 290, 2665–2666 (2003).

    Article  CAS  Google Scholar 

  56. Neuman de Vegvar, H.E. et al. Microarray profiling of antibody responses against simian-human immunodeficiency virus: postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. J. Virol. 77, 11125–11138 (2003).

    Article  CAS  Google Scholar 

  57. Aderem, A. Systems biology: its practice and challenges. Cell 121, 511–513 (2005).

    Article  CAS  Google Scholar 

  58. Holmes, E.C. Viral evolution in the genomic age. PLoS Biol. 5, e278 (2007).

    Article  Google Scholar 

  59. Braga-Neto, U.M. & Marques, E.T. Jr. From functional genomics to functional immunomics: new challenges, old problems, big rewards. PLoS Comput. Biol 2, e81 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, SL., Ganji, G., Paeper, B. et al. Systems biology and the host response to viral infection. Nat Biotechnol 25, 1383–1389 (2007). https://doi.org/10.1038/nbt1207-1383

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1207-1383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing