Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Global mapping of pharmacological space

Abstract

We present the global mapping of pharmacological space by the integration of several vast sources of medicinal chemistry structure-activity relationships (SAR) data. Our comprehensive mapping of pharmacological space enables us to identify confidently the human targets for which chemical tools and drugs have been discovered to date. The integration of SAR data from diverse sources by unique canonical chemical structure, protein sequence and disease indication enables the construction of a ligand-target matrix to explore the global relationships between chemical structure and biological targets. Using the data matrix, we are able to catalog the links between proteins in chemical space as a polypharmacology interaction network. We demonstrate that probabilistic models can be used to predict pharmacology from a large knowledge base. The relationships between proteins, chemical structures and drug-like properties provide a framework for developing a probabilistic approach to drug discovery that can be exploited to increase research productivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human polypharmacology interaction network representing relationships between proteins in chemical space.
Figure 2: Degree of intra- and inter-gene family promiscuity illustrated as a polypharmacology interaction matrix.
Figure 3: Bayesian predictions of pharmacology.
Figure 4: Molecular weight (MW) distribution of compounds by gene family.
Figure 5: Trends in medicinal chemistry of compounds in the database.
Figure 6: Chemical space of drugs and leads.

Similar content being viewed by others

References

  1. Schuffenhauer, A. & Jacoby, E. Annotating and mining the ligand-target chemogenomics knowledge space. Drug Discov. Today: BIOSILICO 2, 190–200 (2004).

    Article  CAS  Google Scholar 

  2. Strausberg, R.L. & Schreiber, S.L. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300, 294–295 (2003).

    Article  CAS  Google Scholar 

  3. Weinstein, J.N. et al. An information intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    Article  CAS  Google Scholar 

  4. Roth, B.L., Kroeze, W.K., Patel, S. & Lopez, E. The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrasment of riches? Neuroscientist 6, 252–262 (2000).

    Article  CAS  Google Scholar 

  5. Krejsa, C.M. et al. Predicting ADME properties and side effects: the BioPrint approach. Curr. Opin. Drug Discov. Develop. 6, 470–480 (2003).

    CAS  Google Scholar 

  6. Horvath, D. & Jeandenans, C. Neighborhood behavior of in silico structural spaces with respect to in vitro activity spaces-a novel understanding of the molecular similarity principle in the context of multiple receptor binding profiles. J. Chem. Inf. Comput. Sci. 43, 680–690 (2003).

    Article  CAS  Google Scholar 

  7. Root, D.E., Flaherty, S.P., Kelley, B.P. & Stockwell, B. Biological mechanism profiling using an annotated compound library. Chem. Biol. 10, 881–892 (2003).

    Article  CAS  Google Scholar 

  8. Wallqvist, A. et al. Mining the NCI screening database: explorations of agents involved in cell cycle regulation. Prog. Cell Cycle Res. 5, 173–179 (2003).

    PubMed  Google Scholar 

  9. Piatetski-Shapiro, G. & Frawley, W. Knowledge Discovery in Databases (MIT Press, Cambridge, 1992).

    Google Scholar 

  10. Klösgen, W. & Zytkow, J.M. (eds.). Handbook of Data Mining and Knowledge Discovery (Oxford University Press, Oxford, 2002).

    Google Scholar 

  11. Drews, J. Genomic sciences and the medicine of tomorrow. Nat. Biotechnol. 14, 1516–1518 (1996).

    Article  CAS  Google Scholar 

  12. Drews, J. & Ryser, S. Classic drug targets. Nat. Biotechnol. 15, 1318–1319 (1997).

    Article  CAS  Google Scholar 

  13. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  14. Golden, J.B. Prioritizing the human genome: knowledge management for drug discovery. Curr. Opin. Drug Discov. Develop. 6, 310–316 (2003).

    CAS  Google Scholar 

  15. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  16. Van Gestel, S. & Schuermans, V. Thirty-three years of drug discovery and research with Dr. Paul Janssen. Drug Dev. Res. 8, 1–13 (1986).

    Article  CAS  Google Scholar 

  17. Sneader, W. Drug Prototypes and Their Exploitation (Wiley, London, 1996).

    Google Scholar 

  18. Wermuth, C.G. Selective optimization of side activities: another way for drug discovery. J. Med. Chem. 47, 1303–1314 (2004).

    Article  CAS  Google Scholar 

  19. McGovern, S.L., Helfand, B.T., Feng, B. & Shoichet, B.K. A specific mechanism of nonspecific inhibition. J. Med. Chem. 46, 4265–4272 (2003).

    Article  CAS  Google Scholar 

  20. Vieth, M. et al. Kinomics—structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta 1697, 243–257 (2004).

    Article  CAS  Google Scholar 

  21. Vieth, M., Sutherland, J.J., Robertson, D.H. & Campbell, R.M. Kinomics: characterizing the therapeutically validated kinase space. Drug Discov. Today 10, 839–846 (2005).

    Article  CAS  Google Scholar 

  22. Frye, S.V. Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic era. Chem. Biol. 6, R3–R7 (1999).

    Article  CAS  Google Scholar 

  23. Xia, X., Maliski, E.G., Gallant, P. & Rogers, D. Classification of kinase inhibitors using a Bayesian model. J. Med. Chem. 47, 4463–4470 (2004).

    Article  CAS  Google Scholar 

  24. Rogers, D., Brown, R.D. & Hahn, M. Using extended-connectivity fingerprints with laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen. 10, 682–686 (2005).

    Article  CAS  Google Scholar 

  25. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    Article  CAS  Google Scholar 

  26. Vieth, M. et al. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem. 47, 224–232 (2004).

    Article  CAS  Google Scholar 

  27. Wenlock, M.C., Austin, R.P., Barton, P., Davis, A.M. & Leeson, P.D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46, 1250–1256 (2003).

    Article  CAS  Google Scholar 

  28. Blake, J.F. Examination of the computed molecular properties of compounds selected for clinical development. Biotechniques (June) Suppl.,16–20 (2003).

  29. Ajay, A., Walters, W.P. & Murcko, M.A. Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J. Med. Chem. 41, 3314–3324 (1998).

    Article  CAS  Google Scholar 

  30. Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).

    Article  CAS  Google Scholar 

  31. Wang, J. & Ramnarayan, K. Towards designing drug-like libraries: a novel computational approach for prediction of drug feasibility of compounds. J. Comb. Chem. 1, 524–533 (1999).

    Article  CAS  Google Scholar 

  32. Walters, W.P. Ajay & Murcko, M.A. Recognizing molecules with drug-like properties. Curr. Opin. Chem. Biol. 3, 384–387 (1999).

    Article  CAS  Google Scholar 

  33. Podlogar, B.L., Muegge, I. & Brice, L.J. Computational methods to estimate drug development paramenters. Curr. Opin. Drug Discov. Devel. 4, 102–109 (2001).

    CAS  PubMed  Google Scholar 

  34. Muegge, I., Heald, S.L. & Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 44, 1841–1846 (2001).

    Article  CAS  Google Scholar 

  35. Veber, D.F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  Google Scholar 

  36. Proudfoot, J.R. Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorg. Med. Chem. Lett. 12, 1647–1650 (2002).

    Article  CAS  Google Scholar 

  37. Egan, W.J., Walters, W.P. & Murcko, M.A. Guiding molecules towards drug-likeness. Curr. Opin. Drug Discov. Devel. 5, 540–549 (2002).

    CAS  PubMed  Google Scholar 

  38. Walters, W.P. & Murcko, M.A. Prediction of 'drug-likeness'. Adv. Drug Deliv. Rev. 54, 255–271 (2002).

    Article  CAS  Google Scholar 

  39. Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev. 23, 302–321 (2003).

    Article  CAS  Google Scholar 

  40. Lajiness, M.S., Vieth, M. & Erickson, J. Molecular properties that influence oral drug-like behavior. Curr. Opin. Drug Discov. Devel. 7, 470–477 (2004).

    CAS  PubMed  Google Scholar 

  41. Stockwell, B.R. Chemical genetics: ligand-based discovery of gene function. Nat. Rev. Genet. 1, 116–125 (2000).

    Article  CAS  Google Scholar 

  42. Austin, C.P., Brady, L.S., Insel, T.R. & Collins, F.S. NIH Molecular Libraries Initiative. Science 306, 1138–1139 (2004).

    Article  CAS  Google Scholar 

  43. Schuffenhauer, A. et al. An ontology for pharmaceutical ligands and its applications for in silico screening and library design. J. Chem. Inf. Comput. Sci. 42, 947–955 (2002).

    Article  CAS  Google Scholar 

  44. Feldman, H.J., Dumontier, M., Ling, S., Haider, N. & Hogue, C.W. CO: A chemical ontology for identification of functional groups and semantic comparison of small molecules. FEBS Lett. 579, 4685–4691 (2005).

    Article  CAS  Google Scholar 

  45. Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    Article  CAS  Google Scholar 

  46. Frantz, S. Drug discovery: playing dirty. Nature 437, 942–943 (2005).

    Article  CAS  Google Scholar 

  47. Connolly, T. & Begg, C. Database Systems, A Practical Approach to Design, Implementation and Management., edn. 3 (Addison Wesley, Reading, MA, 2002).

    Google Scholar 

  48. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  49. R Core Development Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2005).

  50. Andrews, P.R., Craik, D.J. & Martin, J.L. Functional group contributions to drug-receptor interactions. J. Med. Chem. 27, 1648–1657 (1984).

    Article  CAS  Google Scholar 

  51. Hopkins, A.L., Groom, C.R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).

    Article  Google Scholar 

  52. Kuntz, I.D., Chen, K., Sharp, K.A. & Kollman, P.A. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA 96, 9997–10002 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank an unknown referee for very helpful comments and suggestions. Thanks to Federica Massagrande, Emma Williamson, Sid Martin, Phil Brain, Bryn Williams-Jones, Jens Loesel, Mark Gardner, Nigel Wilkinson, Steve Pimblett, Giles Ratcliffe, Jerry Lanfear, Carolyn Barker, Tony Wood, Frank Burslem and Colin Groom. In particular, we would like to thank John Overington, Bissan Al-Lazikani, John Bradshaw and Yosi Taitz. Thanks to Alan Newton and the PGRDi Innovation Fund for financial support.

Author information

Authors and Affiliations

Authors

Contributions

G.V.P., database design and production and knowledge discovery; R.H.B.S., database design and production; W.P.v.H., predictive modeling; J.S.M., chemical representation; A.L.H., database design and knowledge discovery.

Corresponding author

Correspondence to Andrew L Hopkins.

Ethics declarations

Competing interests

All of the authors were or are employees (or contract employees) of Pfizer.

Supplementary information

Supplementary Fig. 1

Bayesian polypharmacology prediction results of Cerep BioPrint data set. (PDF 60 kb)

Supplementary Fig. 2

Bayesian predicted polypharmacology interaction network. (PDF 169 kb)

Supplementary Fig. 3

Supplementary Information to Figure 4. (PDF 598 kb)

Supplementary Table 1

Table of Supplementary Information for Figure 2. (PDF 128 kb)

Supplementary Table 2

Table of Supplementary Information to Figure 3. (PDF 59 kb)

Supplementary Table 3

Supplementary Information for Supplementary Figure 1. (PDF 60 kb)

Supplementary Table 4

Bayesian predicted polypharmacology interaction network for Cerep Bioprint set. (PDF 54 kb)

Supplementary Table 5

Predictions of gene family classification of biologically-active compounds by physico-chemical properties, using Linear Discriminant Analysis. (PDF 60 kb)

Supplementary Data (XLS 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paolini, G., Shapland, R., van Hoorn, W. et al. Global mapping of pharmacological space. Nat Biotechnol 24, 805–815 (2006). https://doi.org/10.1038/nbt1228

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing