Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Vaccine manufacturing: challenges and solutions

Abstract

The recent influenza vaccine shortages have provided a timely reminder of the tenuous nature of the world's vaccine supply and the potential for manufacturing issues to severely disrupt vital access to important vaccines. The application of new technologies to the discovery, assessment, development and production of vaccines has the potential to prevent such occurrences and enable the introduction of new vaccines. Gene-based vaccines, virus-like particles, plant-derived vaccines and novel adjuvants and delivery systems represent promising approaches to creating safer, more potent vaccines. As a consequence, more people will have faster access to more effective vaccines against a broader spectrum of infectious diseases. However, the increased cost of producing new vaccines and regulatory uncertainty remain challenges for vaccine manufacturers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key components of effective vaccines.
Figure 2: Reverse vaccinology for identification of novel vaccine antigens.

Similar content being viewed by others

References

  1. Cooper, M.R., Stewart, D.C., Kahl, F.R., Brown, W.M. & Cordell, A.R. Medicine at the medical center then and now: one hundred years of progress. South. Med. J. 95, 1113–1121 (2002).

    Article  Google Scholar 

  2. Sheridan, C. The business of making vaccines. Nat. Biotechnol. 23, 1359–1366 (2005).

    Article  CAS  Google Scholar 

  3. Greco, M. Key drivers behind the development of global vaccine market. Vaccine 19, 1606–1610 (2001).

    Article  CAS  Google Scholar 

  4. Martineau, B. Stats. Sticking with growth. Vaccine market continues to rise. Mater. Manag. Health Care 13, 42 (2004).

    Google Scholar 

  5. Rappuoli, R., Miller, H.I. & Falkow, S. Medicine. The intangible value of vaccination. Science 297, 937–939 (2002).

    Article  CAS  Google Scholar 

  6. Farchaus, J.W., Ribot, W.J., Jendrek, S. & Little, S.F. Fermentation, purification, and characterization of protective antigen from a recombinant, a virulent strain of Bacillus anthracis. Appl. Environ. Microbiol. 64, 982–991 (1998).

    CAS  Google Scholar 

  7. Ribot, W.J. et al. Comparative vaccine efficacy of different isoforms of recombinant protective antigen against Bacillus anthracis spore challenge in rabbits. Vaccine 24, 3469–3476 (2006).

    Article  CAS  Google Scholar 

  8. Holst, J. et al. Serum bactericidal activity correlates with the vaccine efficacy of outer membrane vesicle vaccines against Neisseria meningitidis serogroup B disease. Vaccine 21, 734–737 (2003).

    Article  CAS  Google Scholar 

  9. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    Article  CAS  Google Scholar 

  10. Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).

    Article  CAS  Google Scholar 

  11. Langermans, J.A. et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 23, 2740–2750 (2005).

    Article  CAS  Google Scholar 

  12. Belshe, R., Lee, M.S., Walker, R.E., Stoddard, J. & Mendelman, P.M. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev. Vaccines 3, 643–654 (2004).

    Article  CAS  Google Scholar 

  13. Buonagurio, D.A. et al. Genetic stability of live, cold-adapted influenza virus components of the FluMist/CAIV-T vaccine throughout the manufacturing process. Vaccine 24, 2151–2160 (2006).

    Article  CAS  Google Scholar 

  14. Hardy, C.T., Young, S.A., Webster, R.G., Naeve, C.W. & Owens, R.J. Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses. Virology 211, 302–306 (1995).

    Article  CAS  Google Scholar 

  15. Katz, J.M. & Webster, R.G. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J. Gen. Virol. 73, 1159–1165 (1992).

    Article  CAS  Google Scholar 

  16. Halperin, S.A. et al. Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived influenza vaccine in healthy adults, seniors, and children. Vaccine 20, 1240–1247 (2002).

    Article  CAS  Google Scholar 

  17. Nicolson, C., Major, D., Wood, J.M. & Robertson, J.S. Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine 23, 2943–2952 (2005).

    Article  CAS  Google Scholar 

  18. Neumann, G., Fujii, K., Kino, Y. & Kawaoka, Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. USA 102, 16825–16829 (2005).

    Article  CAS  Google Scholar 

  19. Donnelly, J.J., Ulmer, J.B., Shiver, J.W. & Liu, M.A. DNA vaccines. Annu. Rev. Immunol. 15, 617–648 (1997).

    Article  CAS  Google Scholar 

  20. Wang, R. et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282, 476–480 (1998).

    Article  CAS  Google Scholar 

  21. Rottinghaus, S.T., Poland, G.A., Jacobson, R.M., Barr, L.J. & Roy, M.J. Hepatitis B DNA vaccine induces protective antibody responses in human non-responders to conventional vaccination. Vaccine 21, 4604–4608 (2003).

    Article  CAS  Google Scholar 

  22. McShane, H. et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 10, 1240–1244 (2004).

    Article  CAS  Google Scholar 

  23. Ulmer, J.B., Wahren, B. & Liu, M.A. Gene-based vaccines: recent technical and clinical advances. Trends Mol. Med. 12, 216–222 (2006).

    Article  CAS  Google Scholar 

  24. Hoare, M. et al. Bioprocess engineering issues that would be faced in producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic. Biotechnol. Prog. 21, 1577–1592 (2005).

    Article  CAS  Google Scholar 

  25. McConkey, S.J. et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med. 9, 729–735 (2003).

    Article  CAS  Google Scholar 

  26. Harper, D.M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255 (2006).

    Article  CAS  Google Scholar 

  27. Alonso, P.L. et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 366, 2012–2018 (2005).

    Article  CAS  Google Scholar 

  28. Tacket, C.O. Plant-derived vaccines against diarrheal diseases. Vaccine 23, 1866–1869 (2005).

    Article  CAS  Google Scholar 

  29. Thanavala, Y. et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc. Natl. Acad. Sci. USA 102, 3378–3382 (2005).

    Article  CAS  Google Scholar 

  30. Pashine, A., Valiante, N.M. & Ulmer, J.B. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 11, S63–S68 (2005).

    Article  CAS  Google Scholar 

  31. Cooper, C.L. et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol. 24, 693–701 (2004).

    Article  CAS  Google Scholar 

  32. Vandepapeliere, P. et al. Potent enhancement of cellular and humoral immune responses against recombinant hepatitis B antigens using AS02A adjuvant in healthy adults. Vaccine 23, 2591–2601 (2005).

    Article  CAS  Google Scholar 

  33. Wille-Reece, U., Wu, C.Y., Flynn, B.J., Kedl, R.M. & Seder, R.A. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J. Immunol. 174, 7676–7683 (2005).

    Article  CAS  Google Scholar 

  34. Kazzaz, J. et al. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control. Release 110, 566–573 (2006).

    Article  CAS  Google Scholar 

  35. Vidal, D. Topical imiquimod: mechanism of action and clinical applications. Mini Rev. Med. Chem. 6, 499–503 (2006).

    Article  CAS  Google Scholar 

  36. Germann, T.C., Kadau, K., Longini, I.M., Jr & Macken, C.A. Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. USA 103, 5935–5940 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B Ulmer.

Ethics declarations

Competing interests

The authors are employees of Novartis Vaccines and Diagnostics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulmer, J., Valley, U. & Rappuoli, R. Vaccine manufacturing: challenges and solutions. Nat Biotechnol 24, 1377–1383 (2006). https://doi.org/10.1038/nbt1261

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing