Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral Transactivation

Abstract

Transactivation is a term that was coined to describe the induction of lambda phage late gene expression by lambda gene Q, which blocks transcription termination. Transactivation is also used to describe two phenomena that affect the initiation of transcription: the induction of helper phage late genes by satellite phage P4, and the induction of adeno–associated satellite virus genes by its adenovirus helper. The induction of retroviral genes by retroviral tat genes is also called transactivation, and in the case of HIV this phenomenon may be post transcriptional.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas, R. 1970. Control of development of temperate bacteriophages. III. Which prophage genes are and which are not trans-activable in the presence of immunity. J. Mol. Biol. 49:393–404.

    Article  CAS  Google Scholar 

  2. Grayhack, E., Yang, X., Lau, L., and Roberts, J.W. 1985. Phage lambda gene Q antiterminator recognizes RNA polymerase near the promoter and accelerates it through a pause site. Cell 42:259–269.

    Article  CAS  Google Scholar 

  3. Six, E.W. and Klug, C. 1973. Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology 51:327–344.

    Article  CAS  Google Scholar 

  4. Diana, C., Deho, G., Geisselsoder, J., Tinelli, L., and Goldstein, R. 1978. Viral interference at the level of capsid size determination by satellite phage P4. J. Mol. Biol. 126:433–445.

    Article  CAS  Google Scholar 

  5. Shore, D., Deho, G., Tsipis, J., and Goldstein, R. 1978. Determination of capsid size by satellite bacteriophage P4. Proc. Natl. Acad. Sci. U.S.A. 75:400–404.

    Article  CAS  Google Scholar 

  6. Lindqvist, R.H. 1981. Recombination between satellite phage P4 and its helper P2. I. In vivo and in vitro construction of P4P2 hybrids. Gene 14:231–241.

    Article  CAS  Google Scholar 

  7. Six, E.W. and Lindqvist, B.H. 1978. Mutual derepression in the P2-P4 bacteriophage system. Virology 87:217–230.

    Article  CAS  Google Scholar 

  8. Calendar, R., Ljungquist, E., Deho, G., Usher, D.C., Goldstein, R., Youderian, P., Sironi, G., and Six, E.W. 1981. Lysogenization by satellite phage P4. Virology 113:20–30.

    Article  CAS  Google Scholar 

  9. Lin, C.-S. 1984. Nucleotide sequence of the essential region of bacteriophage P4. Nucl. Acids Res. 12:8667–8684.

    Article  CAS  Google Scholar 

  10. Six, E.W. and Lindqvist, B.H. 1971. Multiplication of bacteriophage P4 in the absence of replication of the DNA of its helper. Virology 43:8–15.

    Article  CAS  Google Scholar 

  11. Sunshine, M.G. and Sauer, B. 1975. A bacterial mutation blocking P2 phage late gene expression. Proc. Nat. Acad. Sci. U.S.A. 72:2770–2774.

    Article  CAS  Google Scholar 

  12. Christie, G., Haggard-Ljungquist, Feiwell, R., and Calendar, R. 1986. Regulation of bacteriophage P2 late-gene expression: the ogr gene. Proc. Natl. Acad. Sci. U.S.A. 83:3238–3242.

    Article  CAS  Google Scholar 

  13. Birkeland, N. and Lindqvist, B.H. 1986. Coliphage P2 late control gene ogr DNA sequence and product identification. J. Mol. Biol. 188:487–490.

    Article  CAS  Google Scholar 

  14. Lindqvist, B.H. 1974. Expression of phage transcription in P2 lysogens infected with helper-dependent coliphage P4. Proc. Natl. Acad. Sci. U.S.A. 71:2752–2755.

    Article  CAS  Google Scholar 

  15. Dale, E., Christie, G., and Calendar, R. 1987. Organization and expression of the satellite bacteriophage P4 late gene cluster. J. Mol. Biol., in press.

  16. Harris, J.D. and Calendar, R. 1978. Transcription map of satellite coliphage P4. Virology 85:343–358.

    Article  CAS  Google Scholar 

  17. Christie, G. and Calendar, R. 1985. Bacteriophage P2 late promoters. II. Comparison of the four late promoter sequences. J. Mol. Biol. 181:373–382.

    Article  CAS  Google Scholar 

  18. T. Morrison and E. Dale, personal communication.

  19. Kalionis, B., Pritchard, M., and Egan, J.B. 1986. Control of gene expression in the P2-related phages. II. The late control gene B of coliphage 186. J. Mol. Biol. 191:211–220.

    Article  CAS  Google Scholar 

  20. Halling C., personal communication.

  21. Sunshine, M.G., Six, E.W., Barrett, K., and Calendar, R. 1976. Relief of P2 phage amber mutant polarity by the satellite phage P4. J. Mol. Biol. 106:673–682.

    Article  CAS  Google Scholar 

  22. Sauer, B., Ow, D., Ling, L., and Calendar, R. 1981. Mutants of satellite bacteriophage P4 that are defective in the suppression of transcriptional polarity. J. Mol. Biol. 145:29–46.

    Article  CAS  Google Scholar 

  23. Krevolin, M., Inman, R.B., Roof, D., Kahn, M., and Calendar, R. 1985. Bacteriophage P4 DNA replication. Location of the P4 origin. J. Mol. Biol. 182:519–527.

    Article  CAS  Google Scholar 

  24. Bowden, D., Twersky, R., and Calendar, R. 1975. E. coli DNA synthesis mutants: their effect upon bacteriophage P2 and satellite bacteriophage P4 DNA synthesis. J. Bacteriol. 124:167–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Flensburg, J. and Calendar, R. 1987. Bacteriophage P4 DNA replication. Nucleotide sequence of the P4 primase gene and the cis replication region. Submitted to J. Mol. Biol.

  26. Berns, K. and Bohenzky, R. 1986. Adeno-associated virus: an update. Advances in Virus Research, 32:,in press.

  27. Berns, K. and Hauswirth, W.W. 1983. Adeno-associated virus DNA structure and replication, p. 1–31. In: The Parvoviruses, K. Berns (ed.). Plenum Publishing Corp., New York.

    Google Scholar 

  28. Labow, M.A., Hermonat, P.L., and Berns, K. 1986. Positive and negative autoregulation of the adeno-associated virus-2 genome. J. Virol. 60:251–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Carter, B.J., Laughlin, C.A., and Marcus-Sekura, C.J. 1983. Parvovirus transcription, p. 153–207. In: The Parvoviruses, K. Berns (ed.). Plenum Publishing Corp., New York.

    Google Scholar 

  30. Becerra, S.P., Rose, J.A., Hardy, M., and Baroudy, B.M. 1985. Direct mapping of adeno-associated virus capsid proteins B and C: a possible ACG initiation codon. Proc. Natl. Acad. Sci. U.S.A. 82:7919–7923.

    Article  CAS  Google Scholar 

  31. Cheung, A.M.K., Hoggan, W.D., Hauswirth, W.W., and Berns, K. 1980. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit-6 cells. J. Virol. 33:739–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Buller, R.M.L., Janik, J., Sebring, E.D., and Rose, J.A. 1981. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J. Virol. 40:241–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Berns, K. and Labow, M. 1987. Parvovirus gene regulation. J. Gen. Virology. In press.

  34. Carter, B.J. and Laughlin, C.A. 1983. Adeno-associated virus defectiveness and the nature of the helper function, p. 67–127. In: The Parvoviruses, K. Berns (ed.). Plenum Publishing Corp., New York.

    Google Scholar 

  35. Flint, S.J. 1986. Regulation of adenovirus mRNA formation. Advances in Virus Research 31:169–219.

    Article  CAS  Google Scholar 

  36. Richardson, W.D. and Westphal, H. 1984. Requirement for either early region 1a or early region 1b adenovirus gene products in the helper effect for adeno-associated virus. J. Virol. 51:404–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Richardson, W.D. and Westphal, H. 1981. A cascade of adenovirus early functions is required for expression of adeno-associated virus. Cell 27:133–141.

    Article  CAS  Google Scholar 

  38. Jay, F.T., Laughlin, C.A., and Carter, B.J. 1981. Eukaryotic translational control: adeno-associated virus protein synthesis is affected by a mutation in the adenovirus DNA binding protein. Proc. Natl. Acad. Sci. USA 78:2927–2931.

    Article  CAS  Google Scholar 

  39. Janik, J.E., Huston, M.M., and Rose, J.A. 1982. Requirement of adenovirus DNA-binding protein and VAI RNA for production of adeno-associated virus polypeptides. J. Cell Biochemistry, Suppl. 6:209.

    Google Scholar 

  40. Reichel, P.A., Merrick, W.C., Siekierka, J., and Mathews, M.B. 1985. Regulation of a protein synthesis initiation factor by adenovirus VA-RNAI . Nature 313:196–200.

    Article  CAS  Google Scholar 

  41. Schneider, R.J., Safer, B., Munemitsu, S.M., Samuel, C.E., and Shenk, T. 1985. Adenovirus VAI RNA prevents phosphorylation of eIF2α subsequent to infection. Proc. Natl. Acad. Sci. U.S.A. 82:4321–4325.

    Article  CAS  Google Scholar 

  42. Felber, B.K., Paskalis, H., Kleinman-Ewing, C., Wong-Staal, F., and Pavlakis, G.N. 1985. The pX protein of HTLV-1 is a transcriptional activator of its long terminal repeats. Science 229:675–679.

    Article  CAS  Google Scholar 

  43. Sodroski, J., Rosen, C., Goh, W.C., and Haseltine, W. 1985. A transcriptional activator protein encoded by the x-lor region of the human T-cell leukemia virus. Science 228:1430–1434.

    Article  CAS  Google Scholar 

  44. Arya, S.K., Guo, C., Josephs, S., and Wong-Staal, F. 1985. Trans-activator gene of human T-lymphotropic virus type III. Science 229:69–73.

    Article  CAS  Google Scholar 

  45. Sodroski, J., Patarca, R., Rosen, C., Wong-Staal, F., and Haseltine, W. 1985. Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229:74–77.

    Article  CAS  Google Scholar 

  46. Rosen, C.A., Sodroski, J.G., Goh, W.C., Dayton, A.I., Lippke, J., and Haseltine, W.A. 1986. Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature 319:555–559.

    Article  CAS  Google Scholar 

  47. Feinberg, M.B., Jarrett, R.F., Aldovini, A., Gallo, R.C., and Wong-Staal, F. 1986. HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46:807–817.

    Article  CAS  Google Scholar 

  48. Peterlin, B.M., Luciw, P.A., Barr, P.J., and Walker, M.D. 1986. Elevated levels of mRNA can account for the transactivation of human immunodeficiency virus. Proc. Nat. Acad. Sci. USA 83, in press.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calendar, R. Viral Transactivation. Nat Biotechnol 4, 1074–1077 (1986). https://doi.org/10.1038/nbt1286-1074

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1286-1074

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing