Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA interference against viruses: strike and counterstrike

Abstract

RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA. RNAi holds great promise as a novel nucleic acid–based therapeutic against a wide variety of diseases, including cancer, infectious diseases and genetic disorders. Antiviral RNAi strategies have received much attention and several compounds are currently being tested in clinical trials. Although induced RNAi is able to trigger profound and specific inhibition of virus replication, it is becoming clear that RNAi therapeutics are not as straightforward as we had initially hoped. Difficulties concerning toxicity and delivery to the right cells that earlier hampered the development of antisense-based therapeutics may also apply to RNAi. In addition, there are indications that viruses have evolved ways to escape from RNAi. Proper consideration of all of these issues will be necessary in the design of RNAi-based therapeutics for successful clinical intervention of human pathogenic viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleic acid–based antiviral strategies.
Figure 2: Viral escape strategies from RNAi.

Similar content being viewed by others

References

  1. Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol. 1, 34 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haasnoot, P.C.J. & Berkhout, B. RNA interference: its use as antiviral therapy. in Handbook of Experimental Pharmacology Vol. 173, 117–150 (Springer, Berlin and Heidelberg, 2006).

    Google Scholar 

  3. Coburn, G.A. & Cullen, B.R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 76, 9225–9231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacque, J.M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, N.S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Novina, C.D. et al. siRNA-directed inhibition of HIV-1 infection. Nat. Med. 8, 681–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Qin, X.F., An, D.S., Chen, I.S.Y. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA 100, 183–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kronke, J. et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J. Virol. 78, 3436–3446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yokota, T. et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep. 4, 602–608 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCaffrey, A.P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 21, 639–644 (2003).

    Article  PubMed  Google Scholar 

  11. Shlomai, A. & Shaul, Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37, 764–770 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. He, M.L. et al. Inhibition of SARS-associated coronavirus infection and replication by RNA interference. J. Am. Med. Assoc. 290, 2665–2666 (2003).

    Article  CAS  Google Scholar 

  13. Li, B.J. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 11, 944–951 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ge, Q. et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA 100, 2718–2723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Larsen, H.J., Bentin, T. & Nielsen, P.E. Antisense properties of peptide nucleic acid. Biochim. Biophys. Acta 1489, 159–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Petersen, M. & Wengel, J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 21, 74–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Iversen, P.L. Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther. 3, 235–238 (2001).

    CAS  PubMed  Google Scholar 

  19. Jakobsen, M.R., Haasnoot, J., Wengel, J., Berkhout, B. & Kjems, J. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. Retrovirology 4, 29 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Leung, A.K. & Sharp, P.A. microRNAs: a safeguard against turmoil? Cell 130, 581–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Waterhouse, P.M., Wang, M.B. & Lough, T. Gene silencing as an adaptive defence against viruses. Nature 411, 834–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet. 17, 449–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wilkins, C. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436, 1044–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X.H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Segers, G.C., Zhang, X., Deng, F., Sun, Q. & Nuss, D.L. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc. Natl. Acad. Sci. USA 104, 12902–12906 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haasnoot, P.C.J., Cupac, D. & Berkhout, B. Inhibition of virus replication by RNA interference. J. Biomed. Sci. 10, 607–616 (2003).

    Article  PubMed  Google Scholar 

  32. Bennasser, Y., Le, S.Y., Benkirane, M. & Jeang, K.T. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22, 607–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Cullen, B.R. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat. Immunol. 7, 563–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Berkhout, B. & Jeang, K.T. RISCy business: microRNAs, pathogenesis, and viruses. J. Biol. Chem. 282, 26641–26645 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lecellier, C.H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Otsuka, M. et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, J. et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4(+) T lymphocytes. Nat. Med. 13, 1241–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Yeung, M.L. et al. Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2, 81 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Soifer, H.S., Zaragoza, A., Peyvan, M., Behlke, M.A. & Rossi, J.J. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 33, 846–856 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, N. & Kazazian, H.H. Jr . L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13, 763–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Cullen, B.R. Viruses and microRNAs. Nat. Genet. 38 (Suppl.), S25–S30 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Cai, X. et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cui, C. et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 80, 5499–5508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grundhoff, A., Sullivan, C.S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12, 733–750 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Gupta, A., Gartner, J.J., Sethupathy, P., Hatzigeorgiou, A.G. & Fraser, N.W. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Li, F. & Ding, S.W. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol. 60, 503–531 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andersson, M.G. et al. Suppression of RNA interference by adenovirus virus-associated RNA. J. Virol. 79, 9556–9565 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haasnoot, J. et al. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog. 3, e86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, W.X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl. Acad. Sci. USA 101, 1350–1355 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu, S. & Cullen, B.R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 12868–12876 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y. et al. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology 130, 883–892 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Morrissey, D.V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Rana, T.M. Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol. 8, 23–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Layzer, J.M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Boden, D. et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. 32, 1154–1158 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Du, G., Yonekubo, J., Zeng, Y., Osisami, M. & Frohman, M.A. Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J. 273, 5421–5427 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Lo, H.L. et al. Inhibition of HIV-1 replication with designed miRNAs expressed from RNA polymerase II promoters. Gene Ther. 14, 1503–1512 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Akashi, H. et al. Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. Mol. Biosyst. 1, 382–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Konstantinova, P. et al. Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther. 13, 1403–1413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, Y.P., Haasnoot, J. & Berkhout, B. Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res. (2007).

  71. Nishitsuji, H., Kohara, M., Kannagi, M. & Masuda, T. Effective suppression of human immunodeficiency virus type 1 through a combination of short- or long-hairpin RNAs targeting essential sequences for retroviral integration. J. Virol. 80, 7658–7666 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Watanabe, T. et al. Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype. Gene Ther. 13, 883–892 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Weinberg, M.S. et al. Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA. Mol. Ther. 15, 534–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Boden, D., Pusch, O., Lee, F., Tucker, L. & Ramratnam, B. Human immunodeficiency virus type 1 escape from RNA interference. J. Virol. 77, 11531–11535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilson, J.A. & Richardson, C.D. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J. Virol. 79, 7050–7058 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, H.L. et al. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology 128, 708–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Gitlin, L., Stone, J.K. & Andino, R. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J. Virol. 79, 1027–1035 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kusov, Y., Kanda, T., Palmenberg, A., Sgro, J.Y. & Gauss-Muller, V. Silencing of hepatitis A virus infection by small interfering RNAs. J. Virol. 80, 5599–5610 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Das, A.T. et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol. 78, 2601–2605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arrighi, J.F. et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J. Exp. Med. 200, 1279–1288 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, S. et al. Inhibition of HIV-1 multiplication by antisense U7 snRNAs and siRNAs targeting cyclophilin A. Nucleic Acids Res. 32, 3752–3759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ping, Y.H. et al. Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5. Retrovirology 1, 46 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou, N., Fang, J., Mukhtar, M., Acheampong, E. & Pomerantz, R.J. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther. 11, 1703–1712 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Triboulet, R. et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315, 1579–1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Han, J., Kim, D. & Morris, K.V. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl. Acad. Sci. USA 104, 12422–12427 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weinberg, M.S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haraguchi, T. et al. SiRNAs do not induce RNA-dependent transcriptional silencing of retrovirus in human cells. FEBS Lett. 581, 4949–4954 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11, 50–55 (2005).

    Article  PubMed  Google Scholar 

  93. Zhang, W. et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med. 11, 56–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Rossi, J.J. RNAi as a treatment for HIV-1 infection. Biotechniques 40 (Suppl.), 25–29 (2006).

    Article  CAS  Google Scholar 

  95. Westerhout, E.M., Ooms, M., Vink, M., Das, A.T. & Berkhout, B. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res. 33, 796–804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ter Brake, O., Konstantinova, P., Ceylan, M. & Berkhout, B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol. Ther. 14, 883–892 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. van der Hoek, L. et al. Increased multinucleoside drug resistance and decreased replicative capacity of a human immunodeficiency virus type 1 variant with an 8-amino-acid insert in the reverse transcriptase. J. Virol. 79, 3536–3543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grimm, D. & Kay, M.A. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol. Ther. 15, 878–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Jackson, A.L. & Linsley, P.S. Noise amidst the silence: off-target effects of siRNAs? Trends Genet. 20, 521–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, M.B. et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc. Natl. Acad. Sci. USA 101, 3275–3280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Itaya, A. et al. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J. Virol. 81, 2980–2994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Flores, R. et al. Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Lett. 567, 42–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Chang, J. & Taylor, J.M. Susceptibility of human hepatitis delta virus RNAs to small interfering RNA action. J. Virol. 77, 9728–9731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang, H. et al. Structure of an RNA hairpin from HRV-14. Biochemistry 40, 8055–8064 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Rohll, J.B. et al. The 5′-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J. Virol. 68, 4384–4391 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rohll, J.B., Moon, D.H., Evans, D.J. & Almond, J.W. The 3′ untranslated region of picornavirus RNA: features required for efficient genome replication. J. Virol. 69, 7835–7844 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hu, W.Y., Myers, C.P., Kilzer, J.M., Pfaff, S.L. & Bushman, F.D. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol. 12, 1301–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Capodici, J., Kariko, K. & Weissman, D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J. Immunol. 169, 5196–5201 (2002).

    Article  PubMed  Google Scholar 

  111. Surabhi, R.M. & Gaynor, R.B. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J. Virol. 76, 12963–12973 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nishitsuji, H. et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect. 6, 76–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Joshi, P.J., North, T.W. & Prasad, V.R. Aptamers directed to HIV-1 reverse transcriptase display greater efficacy over small hairpin RNAs targeted to viral RNA in blocking HIV-1 replication. Mol. Ther. 11, 677–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Westerhout, E.M., Ter Brake, O. & Berkhout, B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology 3, 57–65 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Albertini, A.A. et al. Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313, 360–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Green, T.J., Zhang, X., Wertz, G.W. & Luo, M. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313, 357–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Fields, B.N., Raine, C.S. & Baum, S.G. Temperature-sensitive mutants of reovirus type 3: defects in viral maturation as studied by immunofluorescence and electron microscopy. Virol. 43, 569–578 (1971).

    Article  CAS  Google Scholar 

  118. Kobayashi, T., Chappell, J.D., Danthi, P. & Dermody, T.S. Gene-specific inhibition of reovirus replication by RNA interference. J. Virol. 80, 9053–9063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Geiss, B.J., Pierson, T.C. & Diamond, M.S. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA. Virol. J. 2, 53 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schubert, S. et al. Strand-specific silencing of a picornavirus by RNA interference: evidence for the superiority of plus-strand specific siRNAs. Antiviral Res. 73, 197–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Egger, D., Teterina, N., Ehrenfeld, E. & Bienz, K. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J. Virol. 74, 6570–6580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Van Aerschot, A. Oligonucleotides as antivirals: dream or realistic perspective? Antiviral Res. 71, 307–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Neuman, B.W. et al. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol. 79, 9665–9676 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Matzen, K. et al. RNase H-mediated retrovirus destruction in vivo triggered by oligodeoxynucleotides. Nat. Biotechnol. 25, 669–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Ter Brake, O. & Berkhout, B. A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs. J. RNAi Gene Silencing 1, 56–65 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vitravene Study Group. Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol. 133, 484–498 (2002).

  127. Vitravene Study Group. Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS. Am. J. Ophthalmol. 133, 475–483 (2002).

  128. Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol. 133, 467–474 (2002).

  129. Amado, R.G. et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum. Gene Ther. 15, 251–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Macpherson, J.L. et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J. Gene Med. 7, 552–564 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Levine, B.L. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA 103, 17372–17377 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ranga, U. et al. Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc. Natl. Acad. Sci. USA 95, 1201–1206 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Woffendin, C., Ranga, U., Yang, Z., Xu, L. & Nabel, G.J. Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc. Natl. Acad. Sci. USA 93, 2889–2894 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bahner, I. et al. Lentiviral vector transduction of a dominant-negative rev gene into human CD34(+) hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol. Ther. 15, 76–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Kohn, D.B. et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94, 368–371 (1999).

    CAS  PubMed  Google Scholar 

  136. Anderson, J. et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes-CCR5 ribozyme, Tat-rev siRNA, and TAR Decoy-in SCID-hu mouse-derived T cells. Mol. Ther. 15, 1182–1188 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Morgan, R.A. et al. Preferential survival of CD4+ T lymphocytes engineered with anti-human immunodeficiency virus (HIV) genes in HIV-infected individuals. Hum. Gene Ther. 16, 1065–1074 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Hugle, T. & Cerny, A. Current therapy and new molecular approaches to antiviral treatment and prevention of hepatitis C. Rev. Med. Virol. 13, 361–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. McHutchison, J.G. et al. A phase I trial of an antisense inhibitor of hepatitis C virus (ISIS 14803), administered to chronic hepatitis C patients. J. Hepatol. 44, 88–96 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Walter de Vries for critically reading the manuscript and stimulating discussions. RNAi research in the Berkhout laboratory is sponsored by ZonMw (Vici grant and Translational Gene Therapy program), NWO-CW (Top grant), the European Union (LSHP-CT-2006-037301) and the Technology Foundation STW (grant AGT.7708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Berkhout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haasnoot, J., Westerhout, E. & Berkhout, B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25, 1435–1443 (2007). https://doi.org/10.1038/nbt1369

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing