Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE)

Abstract

One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. True, L.D. Quantitative immunohistochemistry: a new tool for surgical pathology? Am. J. Clin. Pathol. 90, 324–325 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Spellman, P.T. et al. Design and implementation of Microarray Gene Expression Markup Language (MAGE-ML). Genome Biol. 3, RESEARCH0046 (2002).

  4. Stoeckert, C.J. & Parkinson, H. The MGED ontology: a framework for describing functional genomics experiments. Comp. Funct. Genomics 4, 127–132 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taylor, C.F. et al. A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol. 21, 247–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Garwood, K. et al. PEDRo: a database for storing, searching and disseminating experimental proteomics data. BMC Genomics 5, 68 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones, A., Hunt, E., Wastling, J.M., Pizarro, A. & Stoeckert, C.J. Jr. An object model and database for functional genomics. Bioinformatics 20, 1583–1590 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Xirasagar, S. et al. CEBS object model for systems biology data, SysBio-OM. Bioinformatics 20, 2004–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Jenkins, H. et al. A proposed framework for the description of plant metabolomics experiments and their results. Nat. Biotechnol. 22, 1601–1606 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lindon, J.C. et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 23, 833–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Berman, J.J., Edgerton, M.E. & Friedman, B.A. The tissue microarray data exchange specification: a community-based, open source tool for sharing tissue microarray data. BMC Med. Inform. Decis. Mak. 3, 5 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stoeckert, C.J., Quackenbush, J., Brazma, A. & Ball, C.A. Minimum information about a functional genomics experiment: the state of microarray standards and their extension to other technologies. Drug Discov. Today Targets 3, 159–164 (2004).

    Article  CAS  Google Scholar 

  13. Jones, A.R. et al. The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics. Nat. Biotechnol. 25, 1127–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Rayner, T.F. et al. A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB. BMC Bioinformatics 7, 489 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brazma, A., Krestyaninova, M. & Sarkans, U. Standards for systems biology. Nat. Rev. Genet. 7, 593–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Taylor, C.F. et al. HUPO — Proteomics Standards Initiative (PSI). OMICS 10, 145–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Ball, C.A. & Brazma, A. MGED standards. OMICS 10, 138–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Sansone, S.-A. et al. A strategy capitalizing on synergies: the Reporting Structure for Biological Investigation (RSBI) working group. OMICS 10, 164–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, C.F. et al. Promoting coherent minimum reporting requirements for biological and biomedical investigations: the MIBBI Project. Nat. Biotechnol. (in the press).

  20. Salgado, D., Gimenez, G., Coulier, F. & Marcelle, C. COMPARE, a multi-organism system for cross-species data comparison and transfer of information. Bioinformatics, published online 1 December 2007 (doi:10.1093/bioinformatics/btm599).

    Article  PubMed  Google Scholar 

  21. Haudry, Y. et al. 4DXpress: a database for cross-species expression pattern comparisons. Nucleic Acids Res. 36 (database issue), D847–D853 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Swanson, P.E. Methodologic standardization in immunohistochemistry: a doorway opens. Appl. Immunohistochem. 1, 229–231 (1993).

    Google Scholar 

  23. Taylor, C.R. An exaltation of experts: concerted efforts in the standardization of immunohistochemistry. Hum. Pathol. 25, 2–11 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. McShane, L.M. et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J. Natl. Cancer Inst. 97, 1180–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, C.M. et al. The mouse Gene Expression Database (GXD): 2007 update. Nucleic Acids Res. 35 (database issue), D618–D623 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Baldock, R.A. et al. EMAP and EMAGE: a framework for understanding spatially organized data. Neuroinformatics 1, 309–325 (2003).

    Article  PubMed  Google Scholar 

  27. Whetzel, P.L. et al. Development of FuGO – an ontology for functional genomics experiments. OMICS 10, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Dobashi, Y. et al. Active cyclin A-CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am. J. Pathol. 153, 963–972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Marzo, A.M., Fedor, H.H., Gage, W.R. & Rubin, M.A. Inadequate formalin fixation decreases reliability of p27 immunohistochemical staining: probing optimal fixation time using high-density tissue microarrays. Hum. Pathol. 33, 756–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Sprague, J. et al. The Zebrafish Information Network (ZFIN): the zebrafish model organism database. Nucleic Acids Res. 31, 241–243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carazo, J.M. & Stelzer, E.H. The BioImage Database Project: organizing multidimensional biological images in an object-relational database. J. Struct. Biol. 125, 97–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Rosse, C. & Mejino, J.L. Jr. A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J. Biomed. Inform. 36, 478–500 (2003).

    Article  PubMed  Google Scholar 

  33. Bard, J., Rhee, S.Y. & Ashburner, M. An ontology for cell types. Genome Biol. 6, R21 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bard, J.L. et al. An internet-accessible database of mouse developmental anatomy based on a systematic nomenclature. Mech. Dev. 74, 111–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Hayamizu, T.F., Mangan, M., Corradi, J.P., Kadin, J.A. & Ringwald, M. The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol. 6, R29 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berman, J.J. A tool for sharing annotated research data: the “Category 0” UMLS (Unified Medical Language System) vocabularies. BMC Med. Inform. Decis. Mak. 3, 6 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abd El-Rehim, D.M. et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J. Pathol. 203, 661–671 (2004).

    Article  PubMed  Google Scholar 

  38. Bova, G.S. et al. Web-based tissue microarray image data analysis: initial validation testing through prostate cancer Gleason grading. Hum. Pathol. 32, 417–427 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, A.Y. & True, L.D. Characterization of prostate cell types by CD cell surface molecules. Am. J. Pathol. 160, 37–43 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kernek, K.M. et al. Fluorescence in situ hybridization analysis of chromosome 12p in paraffin-embedded tissue is useful for establishing germ cell origin of metastatic tumors. Mod. Pathol. 17, 1309–1313 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. McKenney, J.K. et al. Basal cell proliferations of the prostate other than usual basal cell hyperplasia: a clinicopathologic study of 23 cases, including four carcinomas, with a proposed classification. Am. J. Surg. Pathol. 28, 1289–1298 (2004).

    Article  PubMed  Google Scholar 

  42. Amara, N. et al. Prostate stem cell antigen is overexpressed in human transitional cell carcinoma. Cancer Res. 61, 4660–4665 (2001).

    CAS  PubMed  Google Scholar 

  43. Ayala, G. et al. High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin. Cancer Res. 10, 6572–6578 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Bart, J. et al. The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur. J. Cancer 40, 2064–2070 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Browne, T.J. et al. Prospective evaluation of AMACR (P504S) and basal cell markers in the assessment of routine prostate needle biopsy specimens. Hum. Pathol. 35, 1462–1468 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, D. et al. Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology 63, 402–407 (2004).

    Article  PubMed  Google Scholar 

  47. Clayton, H., Titley, I. & Vivanco, M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp. Cell Res. 297, 444–460 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Cooray, H.C., Blackmore, C.G., Maskell, L. & Barrand, M.A. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13, 2059–2063 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Giangreco, A., Shen, H., Reynolds, S.D. & Stripp, B.R. Molecular phenotype of airway side population cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L624–L630 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Gmyrek, G.A. et al. Normal and malignant prostate epithelial cells differ in their response to hepatocyte growth factor/scatter factor. Am. J. Pathol. 159, 579–590 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hwang, J.H. et al. Isolation of muscle derived stem cells from rat and its smooth muscle differentiation. Mol. Cells 17, 57–61 (2004); erratum 17, 381 (2004).

    CAS  PubMed  Google Scholar 

  52. Jonker, J.W. et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med. 11, 127–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Knudsen, B.S. et al. High expression of the Met receptor in prostate cancer metastasis to bone. Urology 60, 1113–1117 (2002).

    Article  PubMed  Google Scholar 

  54. Larkin, A. et al. Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression in invasive breast cancer: a prognostic study. Int. J. Cancer 112, 286–294 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, K., Klein-Szanto, A.J. & Kruh, G.D. Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells. J. Natl. Cancer Inst. 92, 1934–1940 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Li, R. et al. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate: cancer patients treated with radical prostatectomy. Am. J. Surg. Pathol. 28, 928–934 (2004).

    Article  PubMed  Google Scholar 

  57. Martin, C.M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 265, 262–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Martin, M.J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Master, V.A., Wei, G., Liu, W. & Baskin, L.S. Urothlelium facilitates the recruitment and trans-differentiation of fibroblasts into smooth muscle in acellular matrix. J. Urol. 170, 1628–1632 (2003).

    Article  PubMed  Google Scholar 

  60. Piotrowska, A.P. et al. Alterations in smooth muscle contractile and cytoskeleton proteins and interstitial cells of Cajal in megacystis microcolon intestinal hypoperistalsis syndrome. J. Pediatr. Surg. 38, 749–755 (2003).

    Article  PubMed  Google Scholar 

  61. Ricciardelli, C. et al. Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate 63, 19–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Roudier, M.P. et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum. Pathol. 34, 646–653 (2003).

    Article  PubMed  Google Scholar 

  63. Rubin, M.A. et al. Quantitative determination of expression of the prostate cancer protein alpha-methylacyl-CoA racemase using automated quantitative analysis (AQUA): a novel paradigm for automated and continuous biomarker measurements. Am. J. Pathol. 164, 831–840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Santagata, S. et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 64, 6854–6857 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Scotlandi, K. et al. C-kit receptor expression in Ewing's sarcoma: lack of prognostic value but therapeutic targeting opportunities in appropriate conditions. J. Clin. Oncol. 21, 1952–1960 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Shah, R.B. et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 64, 9209–9216 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Z. et al. Expression of the human cachexia-associated protein (HCAP) in prostate cancer and in a prostate cancer animal model of cachexia. Int. J. Cancer 105, 123–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Zhigang, Z. & Wenlv, S. Prostate stem cell antigen (PSCA) expression in human prostate cancer tissues: implications for prostate carcinogenesis and progression of prostate cancer. Jpn. J. Clin. Oncol. 34, 414–419 (2004).

    Article  PubMed  Google Scholar 

  70. Deutsch, E.W. et al. Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE). OMICS 10, 205–208 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Drysdale, L. Eichner, M. Heiskanen and M. Westerfield for comments and discussions during the preparation of the MISFISHIE specification and C. Emswiler for assistance with the figures. This work was funded in part with support from the US National Institute of Diabetes & Digestive & Kidney Diseases to members of the Stem Cell Genome Anatomy Projects Consortium, including DK63483 to J. Gordon, DK63481 to I. Lemischka, DK63400 to M. Little, DK63630 to A. Liu and DK63328 to L. Zon (Children's Hospital Boston).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W Deutsch.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutsch, E., Ball, C., Berman, J. et al. Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). Nat Biotechnol 26, 305–312 (2008). https://doi.org/10.1038/nbt1391

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing