Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transgene-based, embryo-specific lethality system for insect pest management

Abstract

Biological approaches to insect pest management offer alternatives to pesticidal control. In area-wide control programs that cover entire regions, the sterile insect technique (SIT) can be used to successfully suppress economically important pest species by the mass release of sterilized pest organisms. However, conventional sterilization by ionizing radiation reduces insect fitness, which can result in reduced competitiveness of the sterilized insects. Here we report a transgene-based, dominant embryonic lethality system that allows for generation of large quantities of competitive but sterile insects without the need of irradiation. The system involves the ectopic expression of a hyperactive pro-apoptotic gene that causes embryo-specific lethality when driven by the tetracycline-controlled transactivator (tTA) under the regulation of a cellularization gene enhancer-promoter. We have successfully tested this system in Drosophila melanogaster. The embryonic lethality can be suppressed maternally, which will allow it to be combined with transgenic female-specific lethality systems to raise only vigorous but sterile males.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of nullo-tTA and sryα-tTA fusion constructs, including functional analysis.
Figure 2: Reversibility of strain EL#42 phenotype.
Figure 3: Maternal suppression of strain EL#42 sterility by the tTA inhibitors doxycycline (light gray) and tetracycline (black).
Figure 4: Embryonic lethality caused by increased cell death in embryos from wild-type virgins mated with EL#42 males.
Figure 5: Competitiveness of EL#42 males.

Similar content being viewed by others

References

  1. Knipling, E.F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462 (1955).

    Article  Google Scholar 

  2. Krafsur, E.S. Sterile insect technique for suppressing and eradicating insect population: 55 years and counting. J. Agric. Entomol. 15, 303–317 (1998).

    Google Scholar 

  3. Walters, M.L., Staten, R.T. & Roberson, R.C. Pink bollworm integrated management using sterile insects under field trial conditions, Imperial Valley, California. in Area-Wide Control of Fruit Flies and Other Insect Pests (ed. Tan, K.H.) 201–206 (Penerbit Universiti Sains Malaysia, Penang, Malaysia, 2000).

    Google Scholar 

  4. Vreysen, M.J. Principles of area-wide integrated tsetse fly control using the sterile insect technique. Med. Trop. 61, 397–411 (2001).

    CAS  Google Scholar 

  5. Wyss, J.H. Screwworm eradication in the Americas—overview. in Area-Wide Control of Fruit Flies and Other Insect Pests (ed. Tan, K.H.) 79–86 (Penerbit Universiti Sains Malaysia, Penang, Malaysia, 2000).

    Google Scholar 

  6. Klassen, W., Lindquist, D.A. & Buyckx, E.J. Overview of the Joint FAO/IAEA Division's involvement in fruit fly sterile insect technique programs. in Fruit Flies and the Sterile Insect Technique (eds. Calkins, C.O., Klassen, W. & Liedo, P.) 3–26 (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  7. Hendrichs, J., Franz, G. & Rendon, P. Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of Mediterranean fruit flies during fruiting seasons. J. Appl. Entomol. 119, 371–377 (1995).

    Article  Google Scholar 

  8. Robinson, A.S., Franz, G. & Fisher, K. Genetic sexing strains in the medfly, Ceratitis capitata: development, mass rearing and field application. Trends Entomol. 2, 81–104 (1999).

    Google Scholar 

  9. Atkinson, P.W., Pinkerton, A.C. & O'Brochta, D.A. Genetic transformation systems in insects. Annu. Rev. Entomol. 46, 317–346 (2001).

    Article  CAS  Google Scholar 

  10. Handler, A.M. A current perspective on insect gene transformation. Insect Biochem. Mol. Biol. 31, 111–128 (2001).

    Article  CAS  Google Scholar 

  11. Horn, C., Schmid, B.G.M., Pogoda, F.S. & Wimmer, E.A. Fluorescent transformation markers for insect transgenesis. Insect Biochem. Mol. Biol. 32, 1221–1235 (2002).

    Article  CAS  Google Scholar 

  12. Heinrich, J.C. & Scott, M.J. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc. Natl. Acad. Sci. USA 97, 8229–8232 (2000).

    Article  CAS  Google Scholar 

  13. Thomas, D.D., Donnelly, C.A., Wood, R.J. & Alphey, L.S. Insect population control using a dominant, repressible, lethal genetic system. Science 287, 2474–2476 (2000).

    Article  CAS  Google Scholar 

  14. Holbrook, F.R. & Fujimoto, M.S. Mating competitiveness of unirradiated and irradiated Mediterranean fruit flies. J. Econ. Entomol. 63, 1175–1176 (1970).

    Article  Google Scholar 

  15. Hooper, G.H.S. & Katiyar, K.P. Competitiveness of gamma-sterilized males of the Mediterranean fruit flies. J. Econ. Entomol. 64, 1068–1071 (1971).

    Article  CAS  Google Scholar 

  16. Cayol, J.P., Vilardi, J., Rial, E. & Vera, M.T. New indices and method to measure the sexual compatibility and mating performance of Ceratitis capitata (Diptera: Tephritidae) laboratory-reared strains under field cage conditions. J. Econ. Entomol. 92, 140–145 (1999).

    Article  Google Scholar 

  17. Mayer, D.G., Atzeni, M.G., Stuart, M.A., Anaman, K.A. & Butler, D.G. Mating competitiveness of irradiated flies for screwworm fly eradication campaigns. Prev. Vet. Med. 36, 1–9 (1998).

    Article  CAS  Google Scholar 

  18. Pedigo, L.P. Entomology and Pest Management (Prentice Hall, Upper Saddle River, 1996).

    Google Scholar 

  19. Grether, M.E., Abrams, J.M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  Google Scholar 

  20. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  Google Scholar 

  21. Ibnsouda, S., Schweisguth, F., de Billy, G. & Vincent, A. Relationship between expression of serendipity α and cellularisation of the Drosophila embryo as revealed by interspecific transformation. Development 119, 471–483 (1993).

    CAS  PubMed  Google Scholar 

  22. Postner, M.A. & Wieschaus, E.F. The nullo protein is a component of the actin-myosin network that mediates cellularization in Drosophila melanogaster embryos. J. Cell Sci. 107, 1863–1873 (1994).

    CAS  PubMed  Google Scholar 

  23. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  24. Vincent, A., Colot, H.V. & Rosbash, M. Blastoderm-specific and read-through transcription of the sryα gene transformed into the Drosophila genome. Dev. Biol. 118, 480–487 (1986).

    Article  CAS  Google Scholar 

  25. Rose, L.S. & Wieschaus, E. The Drosophila cellularization gene nullo produces a blastoderm-specific transcript whose levels respond to the nucleocytoplasmic ratio. Genes Dev. 6, 1255–1268 (1992).

    Article  CAS  Google Scholar 

  26. Chung, J.H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514 (1993).

    Article  CAS  Google Scholar 

  27. Ibnsouda, S. et al. Evolutionarily conserved positive and negative cis-acting elements control the blastoderm-specific expression of the Drosophila serendipity α cellularisation gene. Mech. Dev. 49, 71–82 (1995).

    Article  CAS  Google Scholar 

  28. Bello, B., Resendez-Perez, D. & Gehring, W.J. Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 125, 2193–2202 (1998).

    CAS  Google Scholar 

  29. Conforti, E., Torti, C., Malacrida, A.R. & Bernocchi, G. Mature and developing visual system of Ceratitis capitata (Diptera, Tephritidae): histochemical evidence of nitric oxide synthase in the wild type and the white eye mutant strains. Brain Res. 843, 1–11 (1999).

    Article  CAS  Google Scholar 

  30. Horn, C. & Wimmer, E.A. A versatile vector set for animal transgenesis. Dev. Genes Evol. 210, 630–637 (2000).

    Article  CAS  Google Scholar 

  31. Berghammer, A.J., Klingler, M. & Wimmer, E.A. A universal marker for transgenic insects. Nature 402, 370–371 (1999).

    Article  CAS  Google Scholar 

  32. Robinson, A.S. & Franz, G. The application of transgenic insect technology in the sterile insect technique. in Insect Transgenesis: Methods and Applications (eds. Handler, A.M. & James, A.A.) 307–318 (CRC Press, Boca Raton, FL, 2000).

    Chapter  Google Scholar 

  33. Hagler, J.R. & Jackson, C.G. Methods for marking insects: current techniques and future prospects. Annu. Rev. Entomol. 46, 511–543 (2001).

    Article  CAS  Google Scholar 

  34. Horn, C., Offen, N., Nystedt, S., Häcker, U. & Wimmer, E.A. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics in press (2003).

  35. Rørth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998).

    Article  Google Scholar 

  36. Thummel, C. & Pirrotta, V. New pCaSpeR P-element-vectors. Dros. Inf. Serv. 71, 150 (1992).

    Google Scholar 

  37. Hunter, C., Sung, P., Schejter, E.D. & Wieschaus, E. Conserved domains of the nullo protein required for cell-surface localization and formation of adherens junctions. Mol. Biol. Cell 13, 146–157 (2002).

    Article  CAS  Google Scholar 

  38. Horn, C., Jaunich, B. & Wimmer, E.A. Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev. Genes Evol. 210, 623–629 (2000).

    Article  CAS  Google Scholar 

  39. Roberts, D.B. Drosophila: A Practical Approach (IRL Press, Oxford, 1998).

    Google Scholar 

  40. Lehner, C.F. & O'Farrell, P.H. Drosophila cdc2 homologs: a functional homolog is coexpressed with a cognate variant. EMBO J. 9, 3573–3581 (1990).

    Article  CAS  Google Scholar 

  41. Davis, G.K., Jaramillo, C.A. & Patel, N.H. Pax group III genes and the evolution of insect pair-rule patterning. Development 128, 3445–3458 (2001).

    CAS  PubMed  Google Scholar 

  42. Wang, S.L., Hawkins, C.J., Yoo, S.J., Muller, H.A. & Hay, B.A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Brigitte Jaunich for technical assistance and express our thanks to A. Bergmann, H. Bujard, U. Häcker, C.F. Lehner, S. Nystedt, P. Rørth, P. Sung, and E. Wieschaus for providing plasmids. We thank C.F. Lehner and the members of the Lehrstuhl Genetik for support, encouragement, and discussions during the course of our work, which is supported by the Robert Bosch Foundation. C.H. is a fellow of the Fonds der Chemischen Industrie, partially supported by the BMBF, and E.A.W. acknowledges support from the EMBO Young Investigator Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst A. Wimmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, C., Wimmer, E. A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 21, 64–70 (2003). https://doi.org/10.1038/nbt769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing