Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrating high-content screening and ligand-target prediction to identify mechanism of action

Abstract

High-content screening is transforming drug discovery by enabling simultaneous measurement of multiple features of cellular phenotype that are relevant to therapeutic and toxic activities of compounds. High-content screening studies typically generate immense datasets of image-based phenotypic information, and how best to mine relevant phenotypic data is an unsolved challenge. Here, we introduce factor analysis as a data-driven tool for defining cell phenotypes and profiling compound activities. This method allows a large data reduction while retaining relevant information, and the data-derived factors used to quantify phenotype have discernable biological meaning. We used factor analysis of cells stained with fluorescent markers of cell cycle state to profile a compound library and cluster the hits into seven phenotypic categories. We then compared phenotypic profiles, chemical similarity and predicted protein binding activities of active compounds. By integrating these different descriptors of measured and potential biological activity, we can effectively draw mechanism-of-action inferences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-content screen.
Figure 2: Common factor model defines a multidimensional biological activity space.
Figure 3: Screen layout and phenotypic compound profiling.
Figure 4: Correlation of biological activity and compound structure similarity.
Figure 5: Factor-based phenotypic profiling elucidates SARs in biological activity space.
Figure 6: Factor-based phenotypic profiling provides biological support to structure-based target predictions.

Similar content being viewed by others

References

  1. Haggarty, S.J. The principle of complementarity: chemical versus biological space. Curr. Opin. Chem. Biol. 9, 296–303 (2005).

    Article  CAS  Google Scholar 

  2. Nichols, A. High content screening as a screening tool in drug discovery. Methods Mol. Biol. 356, 379–387 (2007).

    CAS  PubMed  Google Scholar 

  3. Lang, P., Yeow, K., Nichols, A. & Scheer, A. Cellular imaging in drug discovery. Nat. Rev. Drug Discov. 5, 343–356 (2006).

    Article  CAS  Google Scholar 

  4. Mitchison, T.J. Small-molecule screening and profiling by using automated microscopy. ChemBioChem 6, 33–39 (2005).

    Article  CAS  Google Scholar 

  5. Blake, R.A. Target validation in drug discovery. Methods Mol. Biol. 356, 367–377 (2007).

    CAS  PubMed  Google Scholar 

  6. Eggert, U.S. & Mitchison, T.J. Small molecule screening by imaging. Curr. Opin. Chem. Biol. 10, 232–237 (2006).

    Article  CAS  Google Scholar 

  7. Carpenter, A. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  Google Scholar 

  8. Giuliano, K.A., Haskins, J.R. & Taylor, D.L. Advances in high content screening for drug discovery. Assay Drug Dev. Technol. 1, 565–577 (2003).

    Article  CAS  Google Scholar 

  9. Lee, S. & Howell, B.J. High-content screening: emerging hardware and software technologies. Methods Enzymol. 414, 468–483 (2006).

    Article  CAS  Google Scholar 

  10. Spearman, C. “General intelligence”, objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904).

    Article  Google Scholar 

  11. Carroll, J.B. & Schweiker, R.F. Factor analysis in educational research. Rev. Educ. Res. 21, 368–388 (1951).

    Google Scholar 

  12. Floyd, F.J. & Widaman, K.F. Factor analysis in the development and refinement of clinical assessment instruments. Psychol. Assess. 7, 286–299 (1995).

    Article  Google Scholar 

  13. Malinowski, E.R. Factor Analysis in Chemistry 1–432 (John Wiley and Sons, Inc., New York, 2002).

    Google Scholar 

  14. Stewart, D.W. The application and misapplication of factor analysis in marketing research. J. Mark. Res. 18, 51–62 (1981).

    Article  Google Scholar 

  15. Tinsley, H.E.A. & Tinsley, D.J. Uses of factor analysis in counseling psychology research. J. Couns. Psychol. 34, 414–424 (1987).

    Article  Google Scholar 

  16. Johnson, R.A. & Wichern, D.W. Applied Multivariate Statistical Analysis 426–542 (Prentice Hall, Inc., Upper Saddle River, New Jersey, USA, 2002).

    Google Scholar 

  17. Bender, A. & Glen, R.C. Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem. 2, 3204–3218 (2004).

    Article  CAS  Google Scholar 

  18. Johnson, M., Lajiness, M. & Maggiora, G. Molecular similarity: a basis for designing drug screening programs. Prog. Clin. Biol. Res. 291, 167–171 (1989).

    CAS  PubMed  Google Scholar 

  19. Maggiora, G.M. On outliers and activity cliffs–why QSAR often disappoints. J. Chem. Inf. Model. 46, 1535 (2006).

    Article  CAS  Google Scholar 

  20. Hert, J. et al. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 46, 462–470 (2006).

    Article  CAS  Google Scholar 

  21. Carrieri, A., Centeno, N.B., Rodrigo, J., Sanz, F. & Carotti, A. Theoretical evidence of a salt bridge disruption as the initiating process for the alpha1d-adrenergic receptor activation: a molecular dynamics and docking study. Proteins 43, 382–394 (2001).

    Article  CAS  Google Scholar 

  22. Schaper, K. Free-Wilson-type analysis of non-additive substituent effects on THPB dopamine receptor affinity using artificial neural networks. Quant. Struct. Act. Relat. 18, 354–360 (1999).

    Article  CAS  Google Scholar 

  23. Gräfe, U. et al. Aurantimycins, new depsipeptide antibiotics from Streptomyces aurantiacus IMET 43917. Production, isolation, structure elucidation, and biological activity. J. Antibiot. (Tokyo) 48, 119–125 (1995).

    Article  Google Scholar 

  24. Matsumoto, N. et al. Diperamycin, a new antimicrobial antibiotic produced by Streptomyces griseoaurantiacus MK393–AF2. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. (Tokyo) 51, 1087–1092 (1998).

    Article  CAS  Google Scholar 

  25. Yuan, Y., Men, H. & Lee, C. Total synthesis of kendomycin: a macro-C-glycosidation approach. J. Am. Chem. Soc. 126, 14720–14721 (2004).

    Article  CAS  Google Scholar 

  26. Manabe, T., Yoshimori, T., Henomatsu, N. & Tashiro, Y. Inhibitors of vacuolar-type H(+)-ATPase suppresses proliferation of cultured cells. J. Cell. Physiol. 157, 445–452 (1993).

    Article  CAS  Google Scholar 

  27. Kawashima, J. et al. Antitumor activity of heptelidic acid chlorohydrin. J. Antibiot. (Tokyo) 47, 1562–1563 (1994).

    Article  CAS  Google Scholar 

  28. Samuelsson, M.K., Pazirandeh, A., Davani, B. & Okret, S. p57Kip2, a glucocorticoid-induced inhibitor of cell cycle progression in HeLa cells. Mol. Endocrinol. 12, 1811–1822 (1999).

    Article  Google Scholar 

  29. Bielawski, K., Winnicka, K. & Bielawska, A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol. Pharm. Bull. 29, 1493–1497 (2006).

    Article  CAS  Google Scholar 

  30. Ramirez-Ortega, M. et al. Proliferation and apoptosis of HeLa cells induced by in vitro stimulation with digitalis. Eur. J. Pharmacol. 534, 71–76 (2006).

    Article  CAS  Google Scholar 

  31. Pauw, P.G., Kaffer, C.R., Petersen, R.J., Semerad, S.A. & Williams, D.C. Inhibition of myogenesis by ouabain: effect on protein synthesis. In Vitro Cell. Dev. Biol. Anim. 36, 133–138 (2000).

    Article  CAS  Google Scholar 

  32. Schweighoffer, T. et al. Cytometric analysis of DNA replication inhibited by emetine and cyclosporin A. Histochemistry 96, 93–97 (1991).

    Article  CAS  Google Scholar 

  33. Horiuchi, S. et al. Expression of progesterone receptor B is associated with G0/G1 arrest of the cell cycle and growth inhibition in NIH3T3 cells. Exp. Cell Res. 305, 233–243 (2005).

    Article  CAS  Google Scholar 

  34. Owen, G.I., Richer, J.K., Tung, L., Takimoto, G. & Horwitz, K. Progesterone regulates transcription of the p21(WAF1) cyclin-dependent kinase inhibitor gene through Sp1 and CBP/p300. J. Biol. Chem. 273, 10696–10701 (1998).

    Article  CAS  Google Scholar 

  35. Nidhi, G., Glick, M., Davies, J.W. & Jenkins, J.L. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J. Chem. Inf. Model. 46, 1124–1133 (2006).

    Article  CAS  Google Scholar 

  36. Checchi, P.M., Nettles, J.H., Zhou, J., Snyder, J.P. & Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci. 24, 361–365 (2003).

    Article  CAS  Google Scholar 

  37. Li, L. et al. Antitumor agents 155. Synthesis and biological evaluation of 3′,6,7-substituted 2-phenyl-4-quinolones as antimicrotubule agents. J. Med. Chem. 37, 3400–3407 (1994).

    Article  CAS  Google Scholar 

  38. Shi, Q., Chen, K., Morris-Natschke, S.L. & Lee, K.H. Recent progress in the development of tubulin inhibitors as antimitotic antitumor agents. Curr. Pharm. Des. 4, 219–248 (1998).

    CAS  PubMed  Google Scholar 

  39. Tong, Y.G. et al. Pseudolarix acid B, a new tubulin-binding agent, inhibits angiogenesis by interacting with a novel binding site on tubulin. Mol. Pharmacol. 69, 1226–1233 (2006).

    Article  CAS  Google Scholar 

  40. Clemons, P.A. Complex phenotypic assays in high-throughput screening. Curr. Opin. Chem. Biol. 8, 334–338 (2004).

    Article  CAS  Google Scholar 

  41. Loo, L.H., Wu, L.F. & Altschuler, S.J. Image-based multivariate profiling of drug responses from single cells. Nat. Methods 4, 445–453 (2007).

    Article  CAS  Google Scholar 

  42. Olah, M. et al. in Chemoinformatics in Drug Discovery WOMBAT: World of Molecular Bioactivity (ed. Oprea, T.I.) 223–239 (Wiley-VCH, New York, 2004).

    Google Scholar 

  43. Jenkins, J.L., Bender, A. & Davies, J.W. In silico target fishing: predicting biological targets from chemical structure. Drug Discov. Today Technol. 3, 413–421 (2007).

    Article  Google Scholar 

  44. Bender, A. & Glen, R.C. A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication. J. Chem. Inf. Model. 45, 1369–1375 (2005).

    Article  CAS  Google Scholar 

  45. Bender, A., Mussa, H.Y., Reiling, S. & Glen, R.C. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J. Chem. Inf. Model. 44, 1708–1718 (2004).

    CAS  Google Scholar 

  46. Glen, R.C. et al. Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9, 199–204 (2006).

    CAS  Google Scholar 

  47. Nettles, J.H. et al. Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J. Med. Chem. 49, 6802–6810 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Martell, M. Thoma, J. Nettles, B. Dwyer and M. Pflumm for insightful comments and discussions, G. Paris for assembly of the climax screening collection, A. Salic (Harvard Medical School) for the gift of rhodamine azide, C. Mickanin and S. Zhao for automation support, and Q. Yang for database support. D.W.Y. and A.B. are both Novartis Presidential Postdoctoral Fellows. Work in the T.J.M. lab is supported by US National Institutes of Health grant CA78048.

Author information

Authors and Affiliations

Authors

Contributions

D.W.Y., A.B., J.L.J., T.J.M. and Y.F. conceived the work. J.H., D.W.Y. and E.M. performed experiments. D.W.Y. developed and implemented factor analysis of HCS data. A.B. performed ligand-target and compound structure analysis. D.W.Y. and A.B. performed integrated statistical analysis of biological and chemical data. D.W.Y., T.J.M. and Y.F. analyzed phenotypes. C.Y.T. performed cell cycle analysis. J.A.T. and M.L. contributed to experimental design and interpretation. G.-W.C. assisted in data processing and analysis. D.W.Y. and A.B. wrote the paper with assistance from J.L.J., T.J.M. and Y.F.

Corresponding authors

Correspondence to Jeremy L Jenkins or Yan Feng.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 1158 kb)

Supplementary Data 1

Workbook containing results from the factor analysis. (XLS 86 kb)

Supplementary Data 2

Table of hit data. (XLS 445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, D., Bender, A., Hoyt, J. et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 4, 59–68 (2008). https://doi.org/10.1038/nchembio.2007.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nchembio.2007.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing