Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNAi therapeutics: a potential new class of pharmaceutical drugs

Abstract

The rapid identification of highly specific and potent drug candidates continues to be a substantial challenge with traditional pharmaceutical approaches. Moreover, many targets have proven to be intractable to traditional small-molecule and protein approaches. Therapeutics based on RNA interference (RNAi) offer a powerful method for rapidly identifying specific and potent inhibitors of disease targets from all molecular classes. Numerous proof-of-concept studies in animal models of human disease demonstrate the broad potential application of RNAi therapeutics. The major challenge for successful drug development is identifying delivery strategies that can be translated to the clinic. With advances in this area and the commencement of multiple clinical trials with RNAi therapeutic candidates, a transformation in modern medicine may soon be realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular mechanism of RNA interference.
Figure 2: Chemical modifications of siRNAs.
Figure 3: Critical nucleotide positions in siRNAs.
Figure 4: Organs for which RNAi proof of concept has been demonstrated.

Similar content being viewed by others

References

  1. Dykxhoorn, D.M., Palliser, D. & Lieberman, J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 13, 541–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Dykxhoorn, D.M. & Lieberman, J. Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu. Rev. Biomed. Eng. 8, 377–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Rand, T.A., Ginalski, K., Grishin, N.V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl. Acad. Sci. USA 101, 14385–14389 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma, J.B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Vornlocher, H.P., Zimmermann, T.S., Manoharan, M., Rajeev, KG., Roehl, I. & Akinc, A. Nuclease-resistant double-stranded RNA for RNA interference. Patent Cooperation Treaty International Application WO2005115481 (2005).

    Google Scholar 

  9. Li, B. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 11, 944–951 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choung, S., Kim, Y.J., Kim, S., Park, H.O. & Choi, Y.C. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342, 919–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Allerson, C.R. et al. Fully 2'-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Prakash, T.P. et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247–4253 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hoshika, S., Minakawa, N. & Matsuda, A. Synthesis and physical and physiological properties of 4'-thioRNA: application to post-modification of RNA aptamer toward NF-κB. Nucleic Acids Res. 32, 3815–3825 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haeberli, P., Berger, I., Pallan, P.S. & Egli, M. Syntheses of 4'-thioribonucleosides and thermodynamic stability and crystal structure of RNA oligomers with incorporated 4'-thiocytosine. Nucleic Acids Res. 33, 3965–3975 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dande, P. et al. Improving RNA interference in mammalian cells by 4'-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2'-O-alkyl modifications. J. Med. Chem. 49, 1624–1634 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Prakash, T.P. et al. RNA interference by 2′,5′- linked nucleic acid duplexes in mammalian cells. Bioorg. Med. Chem. Lett. 16, 3238–3240 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hall, A.H., Wan, J., Shaughnessy, E.E., Ramsay Shaw, B. & Alexander, K.A. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res. 32, 5991–6000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall, A.H. et al. High potency silencing by single-stranded boranophosphate siRNA. Nucleic Acids Res. 34, 2773–2781 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, J. et al. Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide. ACS Chem. Biol. 1, 176–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Somoza, A., Chelliserrykattil, J. & Kool, E.T. The roles of hydrogen bonding and sterics in RNA interference. Angew. Chem. Int. Edn. Engl. 45, 4994–4997 (2006).

    Article  CAS  Google Scholar 

  21. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boese, Q. et al. Mechanistic insights aid computational short interfering RNA design. Methods Enzymol. 392, 73–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, B., Latek, R., Hossbach, M., Tuschl, T. & Lewitter, F. siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 32, W130–W134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, X. et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 33, 4527–4535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu, S., Adema, C.M. & Lane, T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 33, 1834–1847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jackson, A.L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Jackson, A.L. et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12, 1197–1205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwarz, D.S. et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genetics (in the press).

  36. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Boggs, R.T. et al. Characterization and modulation of immune stimulation by modified oligonucleotides. Antisense Nucleic Acid Drug Dev. 7, 461–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Fedorov, Y. et al. Different delivery methods—different expression profiles. Nat. Methods 2, 241 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Reynolds, A. et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12, 988–993 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11, 50–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. Shen, J. et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 13, 225–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Reich, S.J. et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis. 9, 210–216 (2003).

    CAS  PubMed  Google Scholar 

  46. Nakamura, H. et al. RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol. Vis. 10, 703–711 (2004).

    CAS  PubMed  Google Scholar 

  47. Makimura, H., Mizuno, T.M., Mastaitis, J.W., Agami, R. & Mobbs, C.V. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci. 3, 18 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thakker, D.R. et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl. Acad. Sci. USA 101, 17270–17275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thakker, D.R. et al. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol. Psychiatry 10, 782–789, 714 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Dorn, G. et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tan, P.H., Yang, L.C., Shih, H.C., Lan, K.C. & Cheng, J.T. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther. 12, 59–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Luo, M.C. et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol. Pain 1, 29 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Salahpour, A., Medvedev, I.O., Beaulieu, J.-M., Gainedinov, R.R. & Caron, M.G. Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol. Psychiatry, published online 17 May 2006.

    Google Scholar 

  54. Kumar, P., Lee, S.K., Shankar, P. & Manjunath, N. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med. 3, e96 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen, Y. et al. Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 47, 230–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Harper, S.Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl. Acad. Sci. USA 102, 5820–5825 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodriguez-Lebron, E., Denovan-Wright, E.M., Nash, K., Lewin, A.S. & Mandel, R.J. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice. Mol. Ther. 12, 618–633 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Ralph, G.S. et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med. 11, 429–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Raoul, C. et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. 11, 423–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Singer, O. et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 8, 1343–1349 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Niu, X.Y., Peng, Z.L., Duan, W.Q., Wang, H. & Wang, P. Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int. J. Gynecol. Cancer 16, 743–751 (2006).

    Article  PubMed  Google Scholar 

  63. Grzelinski, M. et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 17, 751–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, W.J. et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14, 343–350 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. Song, E. et al. Antibody-mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Takei, Y., Kadomatsu, K., Yuzawa, Y., Matsuo, S. & Muramatsu, T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 64, 3365–3370 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Minakuchi, Y. et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32, e109 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  68. McNamara, J.O. et al. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1015 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Gurzov, E.N. & Izquierdo, M. RNA interference against Hec1 inhibits tumor growth in vivo. Gene Ther. 13, 1–7 (2005).

    Article  CAS  Google Scholar 

  70. Pulukuri, S.M. et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J. Biol. Chem. 280, 36529–36540 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, Y. et al. Engineering mucosal RNA interference in vivo. Mol. Ther. 14, 336–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Shankar, P., Manjunath, N. & Lieberman, J. The prospect of silencing disease using RNA interference. J. Am. Med. Assoc. 293, 1367–1373 (2005).

    Article  CAS  Google Scholar 

  73. Zimmermann, T.S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Morrissey, D.V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Geisbert, T.W. et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J. Infect. Dis. 193, 1650–1657 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Takeshita, F. & Ochiya, T. Therapeutic potential of RNA interference against cancer. Cancer Sci. 97, 689–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Pal, A. et al. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int. J. Oncol. 26, 1087–1091 (2005).

    CAS  PubMed  Google Scholar 

  78. Schiffelers, R.M. et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F. & Aigner, A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12, 461–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Hu-Lieskovan, S., Heidel, J.D., Bartlett, D.W., Davis, M.E. & Triche, T.J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastic Ewing's sarcoma. Cancer Res. 65, 8984–8992 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Maraganore and B. Greene for critical reading of the manuscript, M. Duckman for graphics assistance and A. Capobianco for word processing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinah W Y Sah.

Ethics declarations

Competing interests

The authors are employees of Alnylam Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bumcrot, D., Manoharan, M., Koteliansky, V. et al. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2, 711–719 (2006). https://doi.org/10.1038/nchembio839

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nchembio839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing