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Spin–orbit coupling of light in asymmetric
microcavities
L.B. Ma1, S.L. Li1, V.M. Fomin1, M. Hentschel2, J.B. Götte3, Y. Yin1, M.R. Jorgensen1 & O.G. Schmidt1,4

When spinning particles, such as electrons and photons, undergo spin–orbit coupling, they

can acquire an extra phase in addition to the well-known dynamical phase. This extra phase is

called the geometric phase (also known as the Berry phase), which plays an important role in

a startling variety of physical contexts such as in photonics, condensed matter, high-energy

and space physics. The geometric phase was originally discussed for a cyclically evolving

physical system with an Abelian evolution, and was later generalized to non-cyclic and

non-Abelian cases, which are the most interesting fundamental subjects in this area and

indicate promising applications in various fields. Here, we enable optical spin–orbit coupling in

asymmetric microcavities and experimentally observe a non-cyclic optical geometric phase

acquired in a non-Abelian evolution. Our work is relevant to fundamental studies and implies

promising applications by manipulating photons in on-chip quantum devices.
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I
n optics, spin–orbit coupling leads to two important
observable effects, the geometric phase1–6 and the spin Hall
effect3,6–8, which play an important role in a surprisingly

large number of physical contexts7,9–12. The geometric phase
has been generalized from a cyclic and Abelian context to
non-cyclic and non-Abelian cases13–15, which have been realized
in many physical systems, such as spinning neutrons16 and
superconducting artificial atoms17. In optics, it is of fundamental
interest to realize a non-cyclic geometric phase acquired in a
non-Abelian evolution by enabling optical spin–orbit coupling in
a weakly anisotropic medium3,18. Optical spin–orbit coupling has
been observed in open systems by the refraction across an
interface7 or in the propagation along helical waveguides3,19.

Here we report on the spin–orbit coupling of light confined to
a closed path within an asymmetric optical microcavity. The
polarization state of light is found to change in both orientation
and eccentricity due to the occurrence of a geometric phase
together with a mode conversion, generating a non-cyclic
geometric phase in a non-Abelian evolution.

Results
Theory of light evolution applied to optical microcavities.
Optical microcavities, which confine light to small volumes by
resonant circulation in a dielectric medium, play an indispensable
role in a wide range of applications and fundamental studies20. In
a general theory describing the evolution of light in a dielectric
medium, a quantum mechanical diagonalization procedure was
applied to the Maxwell equations and Berry’s phase theory18,
where the effective Hamiltonian takes the form:

ĥ ¼ 1
2

p2 � e0 rð Þ
� �̂

I� l
2p

Â � _p� 1
2
D̂: ð1Þ

Here p is the momentum operator, e0(r) represents the scalar
isotropic component of the propagation medium, Î stands for a
unit matrix, the matrix D̂ denotes the anisotropic component of
the dielectric permittivity, l is the wavelength, Â represents the
gauge potential, and _p is the derivative of p. The Hamiltonian can
be divided into three parts ĥ¼ĥ0 þ ĥSOI þ ĥA. The first part
ĥ0¼ 1

2 p2 � e0 rð Þ½ �̂I characterizes the ordinary light propagation
and interference. The second part hSOI¼� l

2p Â � _p denotes the
spin–orbit coupling of photons, and the third part ĥA¼� 1

2 D̂
describes the medium anisotropy18.

In conventional optical whispering-gallery-mode (WGM)
microcavities, such as a cylindrical ring resonator (see Fig. 1a),
the electric field vector does not change with respect to the wave
vector k. In addition, the resonant light propagates along a
closed-loop trajectory, which is distinct from the open helical
trajectories that have been widely used to enable the optical
spin–orbit interactions2,3,19,21. Unlike the propagation via helical
trajectories, the wave vector k experiences a trivial evolution when
propagating along a closed loop. As such, the optical spin–orbit
interaction is irrelevant and the corresponding Hamiltonian
contains only the ĥ0 part, which results in ordinary discrete
eigenmodes in optical WGM resonators. Experimentally, the
eigenmodes manifest themselves by discrete peaks in the resonant
spectra. Each peak in the resonant spectrum is formed by
self-interference with an integer number of waves along the
closed-loop trajectory20,22. In these systems the optical
polarization states are conserved at each resonance.

However, optical spin–orbit coupling can be induced in
specially designed cavity structures. For example, one can
introduce topology into a WGM cavity by employing a Möbius
strip23 as an optical micro-ring cavity. Although the wave vector
k experiences a trivial evolution in this geometry, the transverse
electric field twists around during the propagation in the strip
(see Fig. 1b). In this way, an effective orbital angular momentum

(OAM), similar to that of an optical vortex24–26 or transformed
light beam27, is generated for the spin–orbit coupling. Thus, the
effective Hamiltonian takes the form ĥ¼ĥ0 þ ĥSOI, where
the spin–orbit coupling leads to the occurrence of a geometric
phase. This extra phase leads to a non-integer number of waves
for constructive interferences along a closed-loop trajectory,
which has been revealed in classical Möbius-ring resonators28.
Similar to the previously reported helical waveguides3,29, this
behavior represents an Abelian evolution, where the polarization
orientation varies, while the polarization eccentricity does not.

Here, we experimentally realize light evolution in the presence
of both the spin–orbit interaction and the medium anisotropy in
an on-chip cone-shaped microtube resonator. The cone-shaped
resonator (see Supplementary Figs 1 and 2) is an asymmetric tube
made of a rolled-up SiOx thin film30 as schematically shown in
Fig. 1c. The tube is around 7 mm in diameter with a wall thickness
of B100 nm. In the microtube cavity, optical WGM-type
resonances are established via optical self-interferences along a
closed-loop trajectory guided by the cylindrical tube wall. To
pump the resonances, a linearly polarized laser (at 532 nm) is
focused on the larger diameter tube end, where resonant modes of
higher quality (Q) factor exist (see Supplementary Fig. 2). The
laser excites luminescent defects31 in the amorphous silicon oxide
microtube, which emit light in the visible spectral range at room
temperature. Due to the subwavelength-thin tube wall, photons
linearly polarized along the tube wall are allowed to circulate
around a closed trajectory within the microtubes22, which ensures
that the initial state of the resonant light is linearly polarized with
the polarization orientated around the tube axis. The photons
circulating along the closed trajectory eventually escape from the
microtube cavity and can then be measured and analyzed.

When the light propagates in the thin-walled microtube, the
electric field vector rotates around the tube axis due to the
cone-shape of the microtube (see Fig. 1c). This rotation generates
an effective OAM along the tube axis15. In conventional WGM
cylindrical cavities, the wave vector k (indicating the direction of
the spin angular momentum ) of the resonant light is orthogonal
to the tube axis; thus, there is no possibility to generate the
spin–orbit interactions even if there is an OAM along the axis.
However, at the larger-diameter-end part of a cone-shaped tube,
the average refractive index is made to vary along the tube axis
owing to the variation in the number of windings30. In this
particular geometry, the resonant trajectory slightly tilts out of
plane (see Fig. 1c) to reduce the optical path according to
Fermat’s principle (see Supplementary Note 3). It is this tilted
trajectory which causes the spin angular momentum to be not
orthogonal to the OAM and which, in turn, enables the coupling
between spin and orbital degree of freedom ðĥSOIÞ. In addition,
the resonant light experiences an anisotropic refractive index
(see Supplementary Fig. 5) in the asymmetric tube when it
propagates along a tilted trajectory, which contributes to the ĥA
term.

The terms ĥSOI and ĥA determine the polarization evolution of
the optical wave. By expanding the two terms in equation (1) in
the basis of Pauli matrices r̂i (i¼ 1,2,3), the expression

� l
2p Â � _p� 1

2 D̂
h i

¼ l
2p a � r̂ exhibits a similar form to that of

electrons under the interaction between spin and orbital magnetic
moments, where the vector a plays the role of an ‘effective
magnetic field’18 and r̂ is a vector formed of the Pauli matrices.
Based on the Schrödinger equation, the polarization evolution
equation reads13,18

_a ¼ i Â � _p� p
l
D̂

h i
a; ð2Þ

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10983

2 NATURE COMMUNICATIONS | 7:10983 |DOI: 10.1038/ncomms10983 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


where the polarization state a¼ aþ
a�

� �
is comprised of right

aþ¼
aþ
0

� �
and left a�¼

0
a�

� �
components in the circular

polarization basis. A well-known solution of equation (2) takes
the form13,18

a ¼ P exp i
Z t

0
A � _pŝ3 �

p
l
Dŝ1

� �
dt

� 	
a 0ð Þ; ð3Þ

where P represents the path-ordering operator and

a 0ð Þ¼ 1ffiffi
2

p 1
1

� �
is the linear polarization state parallel to the

tube axis, which is the initial state in this work. The first term in
the integral accounts for the Berry phase1,18

jSOI ¼
Z t

0
A � _pdt: ð4Þ

The second term in the integral in equation (3) results in a factor
CA that originates from the anisotropy of the system. CA enables
the interplay between the two polarization states that gives rise to
the mutual conversion of the right and left circular polarization
components aþ and a� . One should note that the tensor
D̂ ¼Dŝ1 is non-diagonal due to the anisotropy of the medium. In
our work the Berry phase is non-cyclic; in general it takes the
form15

jSOI ¼ arg a 0ð Þ ajh iþ i
Z t

0
dt _p � a p tð Þð Þ rp

�� ��a p tð Þð Þ
� 


; ð5Þ

where a (a� a(t)) is the final state after an evolution on an open
path in the parameter space. Unlike for the cyclic case, a non-
cyclic geometric phase usually cannot easily be derived from

equation (5), and practical measurements could be more
complicated32–34. In the present work, we show a different
convenient strategy to measure this noncyclic geometric phase.

Starting from equation (3), one can present the final
polarization state in terms of the Jones vector3 (see
Supplementary Note 6), where the time variable is omitted as
we have only access to the measured polarization state at the end
of its evolution,

a ¼ aþ
a�

� �
¼ exp

� ij iCA

iCA ij

� �
1ffiffiffi
2

p 1
1

� �

¼ 1ffiffiffi
2

p
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

p
þ i j�CAð Þ sin

ffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

pffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

p

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

p
þ i jþCAð Þ sin

ffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

pffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

p

0
B@

1
CA: ð6Þ

The � ij terms denote the geometric phase acquired for each
circular basis state. aþj j2 and a�j j2 represent the redistributed
circular components after the mode conversion, where
(see Supplementary Note 6)

aþj j2¼ 1
2

1� 2jCA
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

p
j2 þC2

A

 !
;

a�j j2¼ 1
2

1þ 2jCA
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þC2

A

p
j2 þC2

A

 !
:

ð7Þ

It is the non-diagonal element iCA in the matrix in equation (6)
that leads to the coupling and, consequently, to a mutual
conversion between the two circular polarization components
aþ and a� .
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Figure 1 | Optical spin–orbit coupling in WGM microcavities (top panel) and the corresponding polarization evolution on the Poincaré sphere (bottom

panel). (a) In-plane polarized light does not provide orbital angular momentum in a symmetric ring resonator due to the unchanged electric field (E) vector

with respect to the wave vector k, which results in a stationary point on the Poincaré sphere. (b) In a Möbius-ring resonator, the twisted electric field E

along the Möbius strip causes a varying orbital angular momentum for spin–orbit coupling, which results in a cyclic evolution on the Poincaré sphere. (c) An

effective orbital angular momentum along X is generated due to the rotation of the major axis of the electric field E regulated by the cone-shaped tube wall

of an anisotropic medium, allowing for an interaction with the spin angular momentum, which results in a non-cyclic evolution on the Poincaré sphere. The

variations of the major polarization axis of the field E (red arrows) are shown with respect to the laboratory coordinate frame (XYZ). The blue dashed lines

represent light trajectories, while the red dotted lines represent the polarization evolution trace on Poincaré sphere.
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Characterizations of optical polarization evolution. For optical
characterizations, a 50� objective lens was used to focus the
excitation laser beam on the tube wall, while the emitted photons
were collected by the same objective and sent to the spectrometer.
The polarization states of the resonant light were examined by a
fixed polarizer in front of the detector of the spectrometer and a
rotatable l/2 plate. By rotating the l/2 plate, the polarization
orientation of the measured light can be rotated step-by-step
and subsequently filtered by the polarizer and recorded by
the detector. In this way, both the polarization orientation
(with respect to the tube axis) and the polarization eccentricity
can be resolved.

It is well known that the resonant light in WGM microcavities
is either transverse magnetic or transverse electric linearly
polarized22. For symmetric microtubes, the measured electric
field of the light is linearly polarized and oriented parallel to the
tube axis for the transverse magnetic modes22. However, in
cone-shaped microtube cavities the resonant light is no longer
linearly polarized. Figure 2b shows the intensity maps for the
linearly (Lp) and elliptically polarized (Ep) modes as a function of
the orientation angle (0–360�), which were respectively measured
from a symmetric and an asymmetric tube. In the intensity map
measured from the symmetric tube, the polarization state is
clearly shown to be linearly polarized along the tube axis. In the
asymmetric tube case, the varying but unbroken polarization

trace is characteristic for elliptical polarization. Moreover, the
major axis of the ellipse, or in other words the polarization
orientation, is found to tilt away from the tube axis. The polar
plots in Fig. 2c clearly reveal the eccentricity and the tilt angle
(jB44.5�) of one of the measured polarization states after
evolution in the asymmetric microtube cavity. These unusual
phenomena go beyond the conventional knowledge of
optical WGM resonances in microcavities and can be attributed
to the occurrence of a geometric phase in a non-Abelian
evolution of light.

As mentioned above, the initial state of the resonant light in the
microtube cavity is linearly polarized. A linear polarization state
is comprised of the in-phase components of the right and left
circular polarization components as a(0)¼ aþ (0)þ a� (0), with
the same probability amplitude aþ 0ð Þj j2¼ a� 0ð Þj j2¼1=2

� �
, as

schematically shown in Fig. 2a. Due to the spin–orbit coupling,
the right and left circular components acquire a geometric phase
with opposite signs: a¼aþ e� ij þ a� eij, where j is a geometric
phase3, aþj j2 and a�j j2 are redistributed vector amplitudes for
each component due to the mode conversion, as described in
equation (7). As shown in Fig. 2a, the conversion of amplitudes
between the two circular components leads to a change from a
linear to an elliptical polarization, while the geometric phase
causes the orientation of the major axis of the polarization to tilt
by an angle (equal to j) with respect to the initial orientation.
Since the final output state differs from the initial one, the
evolution generates a non-cyclic geometric phase. Here we show
that the non-cyclic geometric phase can be readily measured by
simply recording the tilt angle of the light polarization ellipse. The
change of the circular bases is evidence for the lack of
independent modes, which is a consequence of the intricate
non-Abelian evolution as described above. Since the photons are
guided in the tube wall and their polarization states vary
smoothly, the evolution can be described by an adiabatic
process2,3.

The resonant light experiences the spin–orbit coupling in an
anisotropic medium when resonating in an asymmetric
microtube cavity, hence the polarization state (described by
the eccentricity and the tilt angle) continuously changes as the
light resonates in the microtube, as schematically shown in
Fig. 3a. However, the polarization state can only be measured
when the light escapes from the microtube cavity, at which point
the final state of the evolution has been reached. In order to
depict the evolution trace, a series of final polarization states were
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Figure 2 | Elliptical polarization state of light in a cone-shaped microtube

cavity. (a) In a rolled-up asymmetric microtube being pumped by a laser

beam (532 nm), the linearly polarized light evolves into elliptically polarized

one with the major axis tilted out of (with an angle j) the tube axis.

(b) Resonant mode intensity maps of a linear polarization (Lp) state

measured from a symmetric tube where spin–orbit interaction is absent and

an elliptical polarization (Ep) state measured in the presence of spin–orbit

coupling of light in an asymmetric tube. In the corresponding polar

diagrams shown in (c) the linear polarization (dashed line) is oriented

parallel to tube axis while the elliptical polarization exhibits a tilt angle j
with respect to the tube axis.
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are fitted (blue curve) based on equation (6).
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measured from different asymmetric tubes, in which the resonant
light experiences different extents of the polarization evolution.
Figure 3b shows these series of polarization states plotted on a
Poincaré sphere. In our measurements, tilt angles (Berry phase)
up to B44.5� and an eccentricity of 0.7 have been recorded. It is
found that a larger eccentricity is accompanied by a larger tilt
angle (j) due to their coupled evolution in equation (3). The
corresponding evolution trace can be well reproduced by
equation (6), indicating a good agreement between the theoretical
model and measurements (see Supplementary Note 6). In
addition, we have performed polarization measurements for
different mode frequencies in the same tube cavity and found that
the tilt angle as well as the eccentricity is independent of the
wavelength. This is a clear evidence that the effect is of purely
geometric, rather than dynamical origin.

In contrast to previous reports on optical spin–orbit
coupling3,7,8, where the right and left handed circular
polarization bases are often spatially separated, here we do not
observe such a spatial separation of the spin components, but
rather an amplitude conversion between basis vectors during the
evolution, as discussed above. This process is systematically
shown in Fig. 4 by comparing the variation of the squared moduli
of the coefficients aþj j2 and a�j j2 accompanied by the tilt
angle j. In the measured elliptical polarization curves, the
maximum intensity represents the sum of the two moduli squared
aþj j2 þ a�j j2, while the minimum represents the difference
aþj j2 � a�j j2. Based on the measured results, the respective
squared amplitudes for the right aþj j2 and left a�j j2 circular
components are extracted. The two squared vector amplitudes
vary in an opposite way and therefore result in the vector splitting
of the spinning photons in a Hilbert space. The evolution traces
of the two vector amplitudes agree well with the theoretical model
of equation (7), as shown in Fig. 4.

Discussion
In a previous report, light propagating around a dielectric
microsphere cavity was used to mimic the effect of gravitational

lensing35. Furthermore, the analogy between a static gravitational
field and an anisotropic medium has been utilized to realize a
spin–Hall effect triggered by gravitational field36. In this sense,
our asymmetric microtube cavity could provide an effective
analogue for the laboratory study of the light evolution in a
gravitational field. Moreover, in WGM microcavities light is
confined in a small volume. This avoids a large space required in
the previously reported open light-path systems3,29, and is
therefore attractive for integrating photonic applications on a
chip. This finding may motivate the search for many
novel applications, such as those for on-chip quantum
information technologies, or exploiting interactions of light
with chiral molecules37.

Our work shows that the non-cyclic geometric phase and the
mode conversion for degenerate photon systems, in a
non-Abelian evolution, can be readily demonstrated in a compact
optical microtube cavity. The cone-like asymmetric optical
microcavities establish an ideal platform to realize spin–orbit
coupling for the examination of non-trivial topological effects in
the context of a non-Abelian evolution. In our microtube
structures, the geometric phase can be directly measured by
simply monitoring the polarization tilt angles, while the
eccentricities indicate the mode conversion between the right
and left circular bases. Geometric phase and amplitude variations
of components in the circular polarization basis reveal essential
physical processes in a non-Abelian evolution, which is of interest
for both fundamental and applied physics.

Methods
Microtube preparation. In our experiment, tubular microcavities were prepared by
rolling-up pre-strained nanomembranes30,38,39. The cone-like microtubes were
self-assembled by curling up a circularly patterned SiOx/SiO2 bilayer nanomembrane
on a silicon substrate30, forming an asymmetric microtube. After roll-up, a
30-nm-thick hafnium oxide film was grown on the microtube surface using atomic-
layer-deposition. The tube is around 7mm in diameter with a wall thickness of about
100 nm. The tube length is 45mm and the polarization states were measured at the
larger-diameter-end, where high-Q resonant modes exist30. All high-Q resonant
modes in an asymmetric tube exhibit the same output polarization state.

Optical measurements. The optical polarization analyzer consists of a fixed
polarization beam splitter in front of a spectrometer detector and an assisted
rotatable half wave plate. The microtubular cavities are measured using a laser
confocal microscope (50� ), by which the excitation laser beam (at 532 nm) is
focused at an area of 1 mm2 on the tube wall. The emission signal is collected
through the same objective and then sent to the polarization analyzer. The initial
orientation of the polarization beam splitter and half wave plate is calibrated by a
predefined linearly polarized light, where the polarization orientation is set parallel
to the tube axis. In the measurements, the eccentricities as well as the major axis
orientation of the emission light polarizations are revealed by rotating the half wave
plate (in a step of 2�).
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