Table 1 Prominent methods for cancer gene discovery by somatic exome analysis.

From: Challenges in identifying cancer genes by analysis of exome sequencing data

Method

Data type (method)*

Analysis principle

No. tissue cohorts (no. patients)

Total genes identified

Genes non-unique/unique to method

CGC non-unique/unique to method

Ref.

MAIN-METHODS

 MutSig Suite

SNV (WES)

Combined (frequency, function, clustering)

21 (4,742)

260

191/69

98/7

9, 18

 OncodriverFM

SNV (WES)

Function

28 (6,792)

426

281/145

127/31

29

 OncodriverCL

SNV (WES)

Clustering

28 (6,792)

79

72/7

52/2

30

 ActiveDriver

SNV (WES)

Clustering (+phos-associated mutations)

12 (3,205)

106

74/32

30/5

15, 17

 MuSIC

SNV (WES)

Combined (frequency, function, clustering, correlation with clinical phenotype)

12 (3,205)

182

141/41

81/3

13, 15

ALT-METHODS

       

 Gistic2.0—amplifications

CNV (SNP6)

Frequency

34 (10,752)

1,569

432/1137

53/21

14

 Gistic2.0—deletions

CNV (SNP6)

Frequency

34 (10,752)

6,897

671/6226

98/65

14

 IntOGen—CNV

CNV (SNP6)

Frequency+RNA expression

16 (4,068)

29

28/1

25/0

16

 Dendrix

SNV (WES)

Mutual exclusivity

12 (3,281)

17

28/2

23/1

32

 HotNet2

SNV+CNV (WES+SNP6)

Network

12 (3,281)

147

96/51

43/0

31

 Fusion/translocations

FUS (RNA-seq)

Recurrent fusions

13 (4,366)

492

236/256

41/18

33

  

TOTALS:

42

8,871

906/7,967

175/153

 
  1. *Data types: CNV, copy number variant; FUS, gene fusion; SNV, single nucleotide variant. Methods: RNA-seq, RNA sequencing; SNP6, affymetrix SNP array; WES, whole-exome sequencing.
  2. Number of genes identified within the CGC-positive reference set.