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Multiple-component covalent organic frameworks
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Covalent organic frameworks are a class of crystalline porous polymers that integrate

molecular building blocks into periodic structures and are usually synthesized using

two-component [1þ 1] condensation systems comprised of one knot and one linker.

Here we report a general strategy based on multiple-component [1þ 2] and [1þ 3]

condensation systems that enable the use of one knot and two or three linker units for the

synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks.

Unlike two-component systems, multiple-component covalent organic frameworks feature

asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores.

This strategy not only expands the structural complexity of skeletons and pores but also

greatly enhances their structural diversity. This synthetic platform is also widely applicable to

multiple-component electron donor–acceptor systems, which lead to electronic properties

that are not simply linear summations of those of the conventional [1þ 1] counterparts.
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C
ovalent organic frameworks (COFs) are a class of
crystalline polymers in which organic building blocks
are topologically linked into extended lattice structures

with periodic skeletons and ordered pores1–5. In contrast with
other crystalline porous materials, a distinct feature of COFs is
that they allow precise design of and control over both skeletons
and pores6–9. Remarkably, two-dimensional (2D) COFs can
integrate building blocks into 2D polymer sheets and
further layered frameworks, which constitute periodic columnar
p-arrays and orientated one-dimensional (1D) channels1–5,10.
By virtue of their ordered p-structure and high porosity, COFs
have emerged as a powerful platform for designing functional
materials and have shown outstanding performance in
various fields, including gas adsorption11–19, light emitters20–23,
catalysis24–29, semiconductors30–34, proton conductions35–37 and
energy conversion and storage38–41.

COFs are typically synthesized via topologically directed
[1þ 1] condensation reactions between a knot component and
another linker unit. As a result, for example, only a maximum
of 10 different COFs can be synthesized from a library of one
knot and 10 linkers. Under this conventional [1þ 1] design
scheme, development of new COFs is largely dependent on the
exploration of new knot and linkers, which is however, tedious
and unproductive. Here we report a general multiple-component
(MC) strategy that allows for the use of more than two
components for the topological design and practical synthesis
of MC-COFs, which are formed in a single phase with permanent
porosity and high crystallinity, irrespective of their components
and topologies. Notably, this MC strategy is exceptionally
effective at increasing the structural diversity of COFs, and a
collection of one C3-symmetric vertex and 10 C2-symmetric
linkers can generate 210 new hexagonal MC-COFs according
to the law of combinatorics42. To demonstrate the effectiveness
of various combinations, 53 MC-COFs were synthesized by
condensing one knot with two or three linkers to produce
hexagonal MC-COFs and two linkers to prepare tetragonal
MC-COFs. Furthermore, unlike conventional [1þ 1] COFs,
which undergo symmetric tiling and produce regular polygon
pores, MC-COFs considerably enhanced complexity in
both skeletons and pores by creating sequenced anisotropic
tiling and unusually shaped yet ordered pores. Interestingly,
this MC strategy is also applicable to the synthesis of multiple-
component electron donor–acceptor COFs in which sequenced
donor and acceptor p-arrays trigger strong electronic correlations
among the latticed p-components. As a result, MC-COFs exhibit
greatly enhanced electronic properties that are not simple linear
summation of these of the conventional [1þ 1] two-component
COFs. Therefore, the multiple-component COFs provide a new
platform that considerably expands the designability of structures
and functions of porous organic materials.

Results
Design principle of MC-COFs. Recently, COFs with complicated
lattices and porous structures have been developed by using
several different approaches (Supplementary Fig. 1). The
development of the C2þC2 topology diagram using one knot and
two linkers enables the synthesis of imine-linked kagome-type
COFs with triple pores43. Two examples of such COFs
were demonstrated although their crystallinity and porosity
are quite low; SIOC-COF-1 has the surface area of 478m2 g–1

with the total pore volume of 0.30 cm3 g–1 and SIOC-COF-2 has
much low surface area of 46m2 g–1 and decreased pore volume of
only 0.09 cm3 g–1. This condensation reaction is interesting for
creating triple pores, but the low porosity and limited crystallinity
suggest that the tetraphenylethene knot-based reaction systems

are likely very sensitive to the length of the linkers while the
reason for the extremely low porosity remains unclear. On the
other hand, the use of a bifunctional linker of 4-formylphenyl
boronic acid allows for the synthesis of COFs with two different
boronate and imine linkages in the skeletons that are not available
for conventional [1þ 1] based COFs6,7. The exploration of
desymmetric knot for the [1þ 1] condensation reaction leads to
the synthesis of COFs that consist of co-existed two different
crystalline structures44. The desymmetric strategy thus focuses on
the exploration of [1þ 1] combination, while the desymmetric
knot is the key building block. The desymmetric approach was
exemplified for the hexagonal dual-pore COFs, but it did not
show its capability of synthesising tetragonal COFs. These
approaches are interesting as specific cases of complicated
COFs and demonstrate that COFs are capable of complicated
structural formation. Herein, we report the multiple-component
(MC) [1þ 2] and [1þ 3] strategies based on the general
topology diagrams of the C3þC2 and C4þC2 schemes for the
synthesis of hexagonal and tetragonal COFs. We highlight that
these MC-COFs cannot be predicted and synthesized by using the
above three approaches (Supplementary Fig. 1).

Our idea is based on the following polygon geometric
transformation mechanism: The regular hexagon (C6) and tetragon
(C4) have three and two pairs of same-sized parallel sides,
respectively. From the perspective of polygon geometry, stretching
or shrinking along one pair of parallel sides can produce
C2-symmetric hexagons and tetragons while retaining original
120� and 90� angles (Fig. 1b). This geometric transformation
makes it possible to develop the C2-symmetric hexagonal and
tetragonal pores through the topology design of COFs by
developing multiple-component reaction systems. On the basis of
the above idea, our concept is to integrate two or three different
linkers into the frameworks while keeping one-knot structure.
Owing to the high reversibility of the boronate-linkage reaction,
the 2D polygons are capable of quick structural self-healing. The
disordered 2D polygon layers if any formed are difficult to induce
effective p–p interactions that are essential for the formation of
layered crystalline frameworks; such unstable disordered polygons
would decompose and finally leaves ordered 2D layers in which
linker units are statistically balanced and are integrated into an
ordered lattice. For the synthetic reactions, we utilized the
conventional solvothermal conditions that are similar to those
for the synthesis of [1þ 1] boronate-linked COFs. The 10 different
linkers were selected as they have similar solubility and reactivity
under the solvothermal conditions.

Figure 1a shows the conventional hexagonal and tetragonal
topologies of covalent organic frameworks (COFs) and their design
schemes based on the two-component [1þ 1] copolymerisation of
a C3 or C4-symmetric knot and a C2-symmetric linker1,2. The
C3-symmetric triphenylene (TP) and C4-symmetric nickel
phthalocyanine (NiPc) units are representative knots used for the
synthesis of hexagonal and tetragonal COFs1,2,45,46, respectively.
The crystalline ordered structures of COFs are error-checked and
repaired via self-healing through reversible covalent bonding
reactions1,2,47,48. Figure 1b shows the multiple-component (MC)
[1þ 2] or [1þ 3] strategy that we developed for the synthesis of
MC-COFs, using one knot and three different linkers to showcase
their diversities and transitions in their network lattice and pore
size and shape. In the hexagonal topology (Fig. 1c), each TP knot
was connected to three linker units arranged with intervals of 120�.
For the three-component systems, this geometry required the
stoichiometric ratio of the two linkers to be 1:2 or 2:1 for the
formation of closed hexagons and extended lattice structures. We
developed two different [1þ 2] three-component copolymerisation
systems in which the molar ratio of the two linker units was 1:2 or
2:1 (Fig. 1c). We further varied all three linkers and explored

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12325

2 NATURE COMMUNICATIONS | 7:12325 | DOI: 10.1038/ncomms12325 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


[1þ 3] copolymerisation systems to achieve four-component
hexagonal MC-COFs. We applied this synthetic strategy to
create tetragonal MC-COFs in which each knot was connected

to two sets of the linker units (Fig. 1c). To demonstrate the rational
design of MC-COFs, we synthesized 10 different linkers (Fig. 2a)
for [1þ 2] or [1þ 3] copolymerization with TP and NiPc (Fig. 1c).
Notably, these hexagonal and tetragonal MC-COFs (Fig. 2b–d)
were obtained as crystalline porous materials in a single phase that
featured the asymmetric tiling of organic units and specifically
shaped polygon channels. Their lattice and porous structures were
distinct from those of the conventional [1þ 1] two-component
COFs (Fig. 1a) and were characterized using various analytical
methods (Supplementary Figs 2–193; Supplementary Tables 1–18).

Three-component [1þ 2] MC-COFs. We conducted three-
component [1þ 2] copolymerisations by using the shortest linker
(E1) and a long linker (E7) at a molar ratio of 1:2 or 2:1
as the linkers to condense with 2, 3, 6, 7, 10, 11-hexahydroxy-
triphenylene (TP) as the knots (Fig. 2a,b). These two sets of
[1þ 2] three-component reactions were performed in a mixed
solvent consisting of mesitylene and dioxane under solvothermal
conditions and yielded two MC-COFs (Fig. 3; MC-COF-TP-E11E72

and MC-COF-TP-E12E71, whereas E11E72 is defined as the 1:2 molar
ratio for the E1 and E7 units in the COF; the same definition
was used for the other MC-COFs). Their structures were
characterized through various methods (Fig. 4; Supplementary
Figs 6, 52, 53, 100, 127, 148, 149, 179, 180, 182 and 183;
Supplementary Tables 1–6, 12 and 13).

Powder X-ray diffraction (PXRD) measurements of MC-COF-
TP-E11E72 (Fig. 3a) revealed a series of strong peaks at 2y of 2.76�,
4.90�, 5.38�, 7.52�, and 26.04� (Fig. 4a, red curve; Supplementary
Table 1), which were assigned to the (100), (110), (200), (210),
and (001) facets, respectively. By contrast, MC-COF-TP-E12E71

exhibited different PXRD peaks at 2.94�, 5.32�, 5.84�, 7.84�, and
26.44� (Fig. 4b, red curve; Supplementary Table 1). Notably, these
two sets of PXRD peaks were different from those of the [1þ 1]
counterparts COF-5 (3.48�, 5.99�, 6.96�, 9.18�, and 26.24�)2 and
TP-COF (2.70�, 4.74�, 5.46�, 7.26�, and 26.32�)23. In control
experiments, we measured the PXRD patterns of simple mixtures
of COF-5 and TP-COF at weight ratios of 1:2 and 2:1. These
mixtures showed different PXRD peaks (Supplementary Fig. 6).
The Pawley-refined patterns (Fig. 4a,b, black curves)
confirmed the PXRD peak assignments because the differences
from the observed PXRD pattern were negligible (Fig. 4a,b, blue
curves). Structural simulations using self-consistent charge
density-functional tight-binding (SCC-DFTB) method49 with
starting structures created by AuToGraFS and preoptimized
using a topology-preserving force field were used to optimize the
monolayer and were further extended to layered frameworks with
different stacking modes. In both MC-COFs, the slipped AA
stacking modes were the most stable structures among the various
stacking modes, including eclipsed AA and staggered AB
(Fig. 4a,b; Supplementary Tables 5 and 6). We used the slipped
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Figure 1 | Topology diagrams for the design of COFs. (a) Conventional

[1þ 1] two-component diagram with one knot and one linker for the

synthesis of hexagonal and tetragonal COFs. The knots are shown as C3 and

C4-symmetric bars, and the linkers are shown as C2-symmetric bars. TP

and NiPc are typical C3 and C4-symmetric knots. (b) Polygon geometric

transformation on stretching of regular C6-symmetric hexagons and

C4-symmetric tetragons into their corresponding C2-symmetric polygons.

(c) Our multiple-component [1þ 3] or [1þ4] strategy for the synthesis of

hexagonal and tetragonal multiple-component COFs (MC-COFs). Three

linkers shown in different colours and with different lengths are used to

illustrate the typical knot-linker combinations in the MC strategy. The

linkers are asymmetrically tiled to generate sequenced networks and

specially shaped pores that are completely unlike from those of

conventional COFs.
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AA stacking mode to reconstruct the crystal structures of the
two MC-COFs and the resulting PXRD patterns (Fig. 4a,b,
green curves) were in agreement with the experimentally
observed profiles. MC-COF-TP-E11E72 assumed a space group of
P2 with a¼ 33.5 Å, b¼ 34.0 Å, c¼ 6.8 Å, a¼b¼ 90�, and g¼ 66�
(for atomic coordinates see Supplementary Table 12), and MC-
COF-TP-E12E71 adopted a P2 space group with different lattice
parameter of a¼ 33.1 Å, b¼ 34.0 Å, c¼ 6.8 Å, and a¼ b¼ 90�,
and g¼ 53� (for atomic coordinates see Supplementary Table 13).

The cell parameters of MC-COF-TP-E11E72 were larger than those
of MC-COF-TP-E12E71, because the former contained much longer
E7 linkers in its lattice. Moreover, the difference in the a and b
values observed for the two MC-COFs was in good agreement
with the asymmetric MC tiling of the lattice because the lengths
of two sets of parallel linker pairs were different from that of
another set of linker pairs (Fig. 3b,c). These space groups and
lattice parameters were also different from those of the [1þ 1]
counterparts of COF-5 and TP-COF2,23. Moreover, the staggered
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AB stacking modes could not reproduce the PXRD patterns
(Fig. 4a,b, purple curves).

To quantitatively determine the ratio of the two linkers in the
MC-COFs, we hydrolysed the MC-COF samples with HCl and
measured their 1H nuclear magnetic resonance (NMR) spectra.
Resonances with the predicted coupling patterns were observed in
the expected regions for each of the linkers’ unique protons.

By integrating the resonance peak intensities, the E1 and
E7 linkers were present in ratios of 1:2 for MC-COF-TP-E11E72

(Supplementary Fig. 52) and 2:1 for MC-COF-TP-E12E71

(Supplementary Fig. 53). These proton integrations quantitatively
confirmed the lattice components of these MC-COFs.

Field emission scanning electron microscopy revealed that
MC-COF-TP-E11E72 and MC-COF-TP-E12E71 exhibited completely
different morphologies (that is, belts and flakes, respectively)
(Supplementary Fig. 127). The belts were as large as several
micrometres and the flakes were extended to several hundred
nanometres. High-resolution transmission electron microscopy
was used to visualize their order structures (Supplementary
Figs 148 and 149). These observations again confirmed that the
resulting MC-COFs were obtained as single phases.

MC-COF-TP-E11E72 and MC-COF-TP-E12E71 were highly porous
and exhibited typical type-IV sorption isotherm profiles (Fig. 4c,e).
The Brunauer–Emmett–Teller (BET) surface areas were 1,892 and
1,534m2 g–1 for MC-COF-TP-E11E72 and MC-COF-TP-E12E71,
respectively (Supplementary Table 3). The pore size distribution
profiles revealed that MC-COF-TP-E11E72 and MC-COF-TP-E12E71

possessed only one type of mesopore but different pore sizes of 3.2
and 2.9 nm, respectively (Fig. 4d,f). These pore sizes differed from
those of the [1þ 1] counterparts (that is, COF-5 (2.7 nm)2 and TP-
COF (3.2 nm)23). Thermogravimetric analysis (TGA) revealed that
MC-COF-TP-E11E72 and MC-COF-TP-E12E71 under nitrogen were
stable up to 550 and 400 �C, respectively (Supplementary Fig. 100).

Four-component [1þ 3] MC-COFs. We extended the MC
strategy to the [1þ 3] copolymerisation system for the design and
synthesis of four-component hexagonal MC-COFs in which three
linkers were integrated at the same molar ratio (Figs 1b and 2c).
For example, MC-COF-TP-E1E3E7 (Fig. 5) consisted of TP
knots and three different E1, E3, and E7 linkers, and its
structure was characterized through various analytic methods
(Fig. 6; Supplementary Figs 24, 118, 144, 150, 181, and 186;
Supplementary Tables 1–3 and 9).

MC-COF-TP-E1E3E7 exhibited a PXRD pattern with peaks
located at 2.84�, 4.92�, 5.58� and 26.24�, which were assigned to
the (100), (110), (210) and (001) facets, respectively (Fig. 6a,
red curve). These peaks were different from those of the [1þ 1]
counterparts (that is, COF-5, TP-COF and TT-COF)2,23,50 and
their mixture (Supplementary Fig. 23). Pawley refinement
confirmed the peak assignments (Fig. 6a, black curve), as
evident by their negligible differences (Fig. 6a, blue curve). The
experimental PXRD pattern was consistent with the simulated
pattern (Fig. 6a, green curve) for the most stable slipped AA
stacking mode. The slipped AA stacking mode afforded lattice
parameters of a¼ 33.5 Å, b¼ 34.1 Å, c¼ 6.8 Å, a¼b¼ 90�, and
g¼ 67� (for atomic coordinates see Supplementary Table 16).
On the other hand, the staggered AB stacking mode could not
reproduce the PXRD pattern (Fig. 6a, purple curve).

The 1H NMR spectrum of the digested sample of MC-COF-TP-
E1E3E7 revealed that the molar ratio of TP/E1/E3/ E7 was 2/1/1/1
(Fig. 6b). To determine whether free units existed in the
frameworks, we performed solid-state 13C NMR spectroscopy.
The [1þ 2] MC-COF-TP-E11E72 and MC-COF-TP-E12E71 exhibited
resonances at 147.5, 131.5, 127.4, 123.5 and 104.7 and at 147.1,
131.7, 126.9, 125.2 and 103.6 parts per million (p.p.m.), which are
characteristic of the unique carbon atoms of the TP, E1, and E7
units (Supplementary Figs 179 and 180). Similarly, the [1þ 3]
MC-COF-TP-E1E3E7 exhibited a series of peaks at 146.3, 131.1,
128.2, 124.8, and 104.4 p.p.m. (Fig. 6c; Supplementary Fig. 181).
In contrast, a mixture of the constituent free units of TP, E1, E3,
and E7 exhibited resonances at 144.3, 132.2, 128.7, 125.3, and
105.1 p.p.m. (Supplementary Table 4). A distinct shift (up to
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Figure 4 | Characterisation of typical [1þ 2] hexagonal MC-COFs.

(a,b) PXRD patterns of experimentally observed (red curve), Pawley-refined

pattern (black curve), their difference (blue curve), slipped AA stacking

mode (green curve) and staggered AB stacking mode (purple curve). The

crystal facets are shown with indices on the peaks of (a) MC-COF-TP-E1
1E7
2

and (b) MC-COF-TP-E1
2E7

1 . (c,e) Nitrogen sorption isotherm curves of

(c) MC-COF-TP-E1
1E7
2 and (e) MC-COF-TP-E1

2E7
1 at 77K (solid dots for

adsorption and open circles for desorption). (d,f) Pore size and its

distribution profiles of (d) MC-COF-TP-E1
1E7
2 and (f) MC-COF-TP-E1

2E7
1 .

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12325

6 NATURE COMMUNICATIONS | 7:12325 | DOI: 10.1038/ncomms12325 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


3.2 p.p.m.) between the carbons of the free units and those of the
units that were incorporated into the frameworks confirmed that
no unlinked organic units were present within the MC-COFs.
MC-COF-TP-E1E3E7 exhibited a very high BET surface area of
1,887m2 g–1 and contained only one type of mesopore with a pore
size of 2.9 nm (Fig. 6d,e; Supplementary Table 3).

Discussion
We further explored this MC strategy by using a NiPc knot and
two linkers for the construction of tetragonal MC-COFs (Figs 1b
and 2d). For example, MC-COF-NiPc-E1E7 (Fig. 7a–d) consisted
of E1 and E7 linkers that were parallel matched to form an oblong
polygon lattice. The compositions, linkage, crystalline structures,
morphology and porosity were unambiguously determined using
various analytic methods (Fig. 7e–h; Supplementary Figs 30, 93,
121, 147, 187 and 188; Supplementary Tables 1–3, 10). The PXRD
pattern of MC-COF-NiPc-E1E7 exhibited strong diffraction peaks
at 3.44�, 6.02, 8.52 and 26.62�, which were assigned to the (100),
(200), (300) and (001) facets, respectively (Fig. 7e, red curve).
This PXRD pattern differed from those of [1þ 1] two-component
COFs (that is, NiPc-COF45 and NiPc-Py-COF46) and their
mixture (Supplementary Fig. 30). The negligible difference
between the Pawley-refined PXRD pattern (Fig. 7e, black and
blue curves) and the experimentally observed profile supported
the peak assignments. The slipped AA stacking mode (Fig. 7c,d)
was the most stable structure that reproduced the PXRD
pattern (green curve) and adopted a P222 space group with

a¼ 23.0 Å, b¼ 27.3 Å, c¼ 6.7 Å, a¼b¼ 90�, and g¼ 90� (for
atomic coordinates see Supplementary Table 17). This difference
between the a and b values indicated asymmetric tiling of the two
linkers in the tetragonal lattice. The staggered AB stacking mode
gives rise to a PXRD pattern (Fig. 7e, purple curve) that is
different from that of experimentally observed one. MC-COF-
NiPc-E1E7 was highly porous, with a BET surface area of
672m2 g–1 and included one kind of mesopore with a pore size of
2.6 nm (Fig. 7f,g; Supplementary Table 1).

The conventional [1þ 1] strategy generated 10 hexagonal and
10 tetragonal COFs for TP and NiPc knots combined with 10
linkers (Figs 1a and 2a). In contrast, the three-component [1þ 2]
and four-component [1þ 3] systems yielded 90 and 120
hexagonal COFs, respectively, whereas the [1þ 2] tetragonal
strategy yielded 45 different COFs. Therefore, the MC strategy
greatly enhanced the number of COF structures from 20 to 255.
Among these structures, we randomly choose 53 combinations
and prepared 53 different COFs (Fig. 2b–d). Notably, the
MC strategy was compatible with various linkers with lengths
from 7 to 22Å, structures ranging from simple arenes to
heterocycles, and large p-systems that can be predesigned with
electron-donating and accepting functions (Fig. 2).

In addition to considerably enhanced structural diversity, the
MC strategy had two profound effects on the structural
development of COFs. (1) This strategy provides a method
for preparing tailor-made, specially shaped pores that are difficult
to achieve with other porous materials and might have
applications in shape-selective separation and catalysis24–29,44,51.
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(2) This strategy also enhances the structural complexity while
retaining its p-periodicity. This effect expands the designability
of the structures and functions of COFs. For example, the
four-component COFs consist of periodic arrays of four different
p-columns that are sequenced but have varied structures and
functions.

Along this line of study, we further explored the possibility for
the integration of MC electron-donating and -accepting units into
MC-COFs in which the sequenced p-arrays may trigger strong
electronic correlations among the latticed p-components.
The [1þ 2] copolymerisation of electron-donating TP knots with
an electron-accepting E2 linker and other electron-donating E1,

E3, E4 and E7 linkers yielded a series of electron donor–acceptor
MC-COFs, including MC-COF-TP-E11E22, MC-COF-TP-E12E21,
MC-COF-TP-E22E31, MC-COF-TP-E22E41 and MC-COF-TP-E22E71

(Fig. 8a–e). These MC-COFs triggered charge transfer from the
TP knots to the E2 linkers, while the lattice tiling patterns tuned
the charge-transferring capability, as evidenced by the different
degrees of red-shifting of the band in the near infrared region of
the electronic absorption spectra (Supplementary Figs 190–193).
Notably, these MC-COFs exhibited ohmic-type conducting
profiles but different currents (Fig. 8f). An enhancement of
nearly 180,000% was observed for MC-COF-TP-E22E31 (red)
compared with the conventional [1þ 1] counterparts (that is,
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D-A COF (purple)52 and TT-COF (pink)50). These results
confirmed that the properties of the MC-COFs are not simple
linear sums of their [1þ 1] two-component counterparts, thus
supporting the notion that the sequence and high order of the
p-units within the MC-COFs may be useful for enhancing a
specific property or achieving a new function.

In summary, we have developed a general strategy for the
design and synthesis of crystalline porous COFs that enable
the integration of multiple components into lattice structures
with sequenced alignment. The multiple-component COFs

greatly expand the structural complexity via asymmetric tiling
of building blocks, providing a new platform for constructing
anisotropic p-columnar arrays and unconventionally shaped
pores. At the same time, this strategy considerably increases the
structural diversity of COFs while retaining high crystallinity
and porosity. We envisage that the MC-COFs constitute an
important step towards various unprecedented molecular systems
for functional exploration with enhanced structural complexity
and diversity that are hardly available for conventional COFs
architectures and other porous materials.
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Methods
General procedure for three-component [1þ 2] hexagonal MC-COFs. A
mesitylene/dioxane (0.5ml/0.5ml) mixture of TP (0.022mmol, 14.9mg) and two

edge units (total 0.033mmol) at different molar ratios of 1/2 and 2/1 in
a Pyrex tube (10ml) was degassed by using three freeze–pump–thaw cycles
(Supplementary Note 1). The tube was sealed off using flame and heated at 120 �C
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for 3 days. The precipitate was collected via centrifuge and washed with anhydrous
acetone for 5 times. The powder was dried at 120 �C under vacuum overnight to
yield the corresponding MC-COFs. Yields between 87 and 96%.

General procedure for four-component [1þ 3] hexagonal MC-COFs. A mesi-
tylene/dioxane (0.5ml/0.5ml) mixture of TP (0.022mmol, 14.9mg) and three edge
units (total 0.033mmol) at molar ratio of 1/1/1 in a Pyrex tube (10ml) was
degassed by using three freeze–pump–thaw cycles. The tube was sealed off using
flame and heated at 120 �C for 3 days. The precipitate was collected via centrifuge
and washed with anhydrous acetone for five times. The powder was dried at 120 �C
under vacuum overnight to yield the corresponding MC-COFs. Yields between 82
and 94%.

General procedure for three-component [1þ 2] tetragonal MC-COFs. A
mesitylene/dioxane (0.5ml/0.5ml) mixture of NiPc (0.022mmol, 14.9mg) and two
edge units (total 0.044mmol) at the ratio of 1/1 in a Pyrex tube (10ml) was
degassed by using three freeze–pump–thaw cycles. The tube was sealed off using
flame and heated at 120 �C for 3 days. The precipitate was collected via centrifuge
and washed with anhydrous acetone for five times. The powder was dried at 120 �C
under vacuum overnight to yield the corresponding MC-COFs.

1H NMR spectroscopy. In general, dried MC-COF samples (10mg) were dis-
solved in 1.0ml HCl solution (20 wt% aqueous HCl solution) on sonication and
digested for 12 h at 25 �C. The mixture was dried under vacuum for 16 h. Then d6-
dimethyl sulfoxide (600 ml) was added to dissolve the resulting solid for 1H NMR
spectroscopy. The proton signals and their integrations were used for the quanti-
tative determination of the components of MC-COFs.

Conductivity measurement. MC-COFs samples (5mg) were dispersed in 2ml
anhydrous dichloromethane and sonicated for 10min. The highly dispersed
MC-COFs solution was dropped on the center of conducting electrodes as a
film. The measurement was conducted on MC-COF films between 10 mm
platinum electrodes at 25 �C in Ar using a two-probe method with a
subfemtoamp sourcemeter (Keithley 6,430). I–V curves were recorded at bias
voltages from � 10 to 10V.

Structural characterization. 1H NMR spectra were recorded on JEOL models
JNM-LA400 NMR spectrometers, where chemical shifts (d in p.p.m.) were
determined with a residual proton of the solvent as standard. Solid-state 13C NMR
spectra were recorded on JEOL model 920MHz NMR spectrometer with a
magnetic field of 21.62 Tesla. The frequency of the rotors was 15 kHz. For solid-
state cross-polarization magic angle spinning 13C nuclear magnetic resonance
(13C CP/MAS NMR), cross polarization with polarization inversion 1,808 scans
(13C CPPI) and cross polarization with non-quaternary suppression (13C CPNQS)
were performed with a delay time of 5 s. Ultraviolet–vis–infrared diffuse reflectance
spectrum (Kubelka–Munk spectrum) was recorded on a JASCO model V-670
spectrometer equipped with integration sphere model IJN-727. Field-emission
scanning electron microscopy was performed on a JEOL model JSM-6700
operating at an accelerating voltage of 5.0 kV. The sample was prepared by
drop-casting a supersonicated solvents suspension onto mica substrate and then
coated with gold. High-resolution transmission electron microscopy images were
obtained on a JEOL model JEM-3200 microscopy. The sample was prepared by
drop-casting a supersonicated tetrahydrofuran suspension of the COFs onto a
copper grid. PXRD data were recorded on a Rigaku model RINT Ultima III
diffractometer by depositing powder on glass substrate, from 2y¼ 1.5� up to 30�
with 0.02� increment. Elemental analysis was performed on a Yanako CORDER
MT-6 elemental analyser. Thermogravimetric analysis measurements were
performed on a Mettler-Toledo model TGA/SDTA851 under N2, by heating to
800 �C at a rate of 10 �Cmin–1 with samples held in aluminium pans. Nitrogen
sorption isotherms were measured at 77 K with Micromeritics Instrument
Corporation model 3Flex surface characterization analyser. Before measurement,
the samples were degassed in vacuum at 120 �C for more than 10 h. By using the
non-local density functional theory (NLDFT) model, the pore volume was derived
from the sorption curve.

Computational calculations. The structures of COFs were calculated using the
density-functional tight-binding (DFTBþ ) method including Lennard–Jones
dispersion. The calculations were carried out with the DFTBþ program package
version 1.2. DFTB is an approximate density functional theory method based on
the tight-binding approach and utilizes an optimized minimal LCAO Slater-type
all-valence basis set in combination with a two-center approximation for Hamil-
tonian matrix elements. The Coulombic interaction between partial atomic charges
was determined using the self-consistent charge (SCC) formalism. Lennard–Jones
type dispersion was employed in all calculations to describe van der Waals (vdW)
and p-stacking interactions with starting structures created by AuToGraFS53 and
preoptimized using a topology-preserving force field54 were used to optimize the
monolayer and were further extended to layered frameworks with different

stacking modes. The lattice dimensions were optimized simultaneously with the
geometry. Standard DFTB parameters for X–Y element pair (X, Y¼C, O, H
and N) interactions were employed from the mio-0–1 set10. The accessible surface
areas were calculated from the Monte Carlo integration technique using a
nitrogen-size probe molecule (diameter¼ 3.68 Å) roll over the framework surface
with a grid interval of 0.25 Å. The X-ray diffraction pattern simulation was
performed in a software package for crystal determination from PXRD pattern,
implemented in MS modeling version 4.4 (Accelrys Inc.). We performed Pawley
refinement to optimize the lattice parameters iteratively until the RP and RWP
values converge. The pseudo-Voigt profile function was used for whole profile
fitting and Berrar–Baldinozzi function was used for asymmetry correction during
the refinement processes.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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