Figure 3: Global FAs analysis reveals that metazachlor reduces all types of >24-FAs. | Nature Communications

Figure 3: Global FAs analysis reveals that metazachlor reduces all types of >24-FAs.

From: Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains

Figure 3

(a) Global FAs of Arabidopsis roots in untreated (black) and metazachlor-treated (red) conditions. Compounds of the root suberin, dicarboxylic acid DCA and fatty alcohols are not altered by a 50 nm metazachlor treatment. However, ω-hVLCFAs, which are components are the root suberin, are significantly reduced on metazachlor. Non-hydroxylated C22 and C24-FAs, which are more abundant in GIPCs than in glycerophospholipids, are significantly reduced on metazachlor. hVLCFAs h22:0, h24:0, h24:1, h25:0, h26:0 and h26:1, almost exclusively present in GIPCs, are strongly reduced on metazachlor. Accumulation of h16:0 and h20:0 is observed on metazachlor. (b) Contrastingly to VLCFAs, metazachlor does not alter the quantity of C16- and C18-containing FAs (n=4 for each experiment, 4 biological replicates). (c,d) Sums of <24 carbon atom-containing FAs (c) and>24 carbon atom-containing FAs (d). Each histogram is further divided in hFAs (α-h) and non-hFAs (non-α-h). On metazachlor, the ratio between <24- and >24-FAs is drastically inverted. Statistics were done by two-sided Wilcoxon’s rank-sum test, *P-value<0.05, n=4 for each experiment, 4 biological replicates. Error bars are s.d.

Back to article page