Figure 1: Schematic diagram of a stepwise omic-data integration which informs the in vivo therapeutic approach. | Nature Communications

Figure 1: Schematic diagram of a stepwise omic-data integration which informs the in vivo therapeutic approach.

From: Local microRNA delivery targets Palladin and prevents metastatic breast cancer

Figure 1

Local miRNA delivery to the primary tumour is used to prevent breast cancer metastasis. To examine the effect of genomic alterations on breast cancer, we performed a stepwise omic-data integration to generate a narrow list of potentially functional variants for cancer metastasis, in which we intersect two datasets: TargetScan and dbSNP. Using this approach, we identified 20 SNPs, which are located at miRNA-binding sites in regulatory 3′-UTR regions of genes that are related to breast cancer (in particular those involved in cytoskeleton organization) (a). Our in vitro studies reveal miR-96 and miR-182 as key regulators of breast cancer cell motility via regulation of Palladin, which encodes a cytoskeletal protein that is required for organizing the actin cytoskeleton (b). Clinical data analysis supports clinical relevance in a human breast cancer cohort (c). Our data corroborate the role of miRNAs in metastasis regulation, and demonstrate that in vivo local delivery of miR-96 and miR-182 to the primary tumour can serve as a potential treatment to prevent breast cancer metastasis (d).

Back to article page