Figure 3: Computed binding energies predict experimental displacement time. | Nature Communications

Figure 3: Computed binding energies predict experimental displacement time.

From: Towards first-principles molecular design of liquid crystal-based chemoresponsive systems

Figure 3

Shown is the experimental response time of 5CB anchored to various metal salts upon exposure to dimethyl methylphosphonate (DMMP) as a function of calculated displacement energy. The response time was defined as the time required to reach 80% normalized light intensity. Filled squares represent values for metal cations in the original data set of reduced charge calculations and corresponding experiments. The best-fit curve was calculated from these original data points, with the exception of the Cu outlier. Filled triangles represent new (Cr3+, Sc3+ and Fe2+) cations with response times predicted by the reduced charge model and evaluated experimentally. The hollow data points represent data calculated from a solvent-explicit model, as described in the text. Experimental error bars are drawn one standard deviation from the mean. All charge designations shown in the figure correspond to the metal salt precursor charges from experiments.

Back to article page