Figure 2: Experimental setup and level schemes. | Nature Communications

Figure 2: Experimental setup and level schemes.

From: Time-resolved scattering of a single photon by a single atom

Figure 2

(a) (Top left) Four-wave mixing part, providing heralded single photons: pump 1 (795 nm) and pump 2 (762 nm) are overlapped in a copropagating geometry inside the cold cloud of 87Rb atoms in a magneto-optical trap (MOT), generating pairs of herald (776 nm) and probe (780 nm) photons. The detection of a photon at Dh heralds a probe photon. (Top right) Tuning the resonance of a bandwidth-matched cavity with respect to the heralding photon frequency controls the temporal envelope. (Bottom) Single atom part: A 87Rb atom is trapped at the focus of a confocal aspheric lens pair (AL; numerical aperture 0.55) with a far-off-resonant optical dipole trap (980 nm). The probe photons are guided to the single atom part by a single mode fibre and focused onto the atom by the first AL. Avalanche photodetectors Df and Db detect photons collected in forward and backward directions. An acousto-optic modulator (AOM) shifts the probe photon frequency to compensate for the shift of the atomic resonance frequency caused by the bias magnetic field and the dipole trap. λ/2, λ/4, half- and quarter-wave plates; Dh, Df, Db, avalanche photodetectors (APDs); DM, dichroic mirror; F, interference filter; PDH lock, Pound–Drever–Hall frequency lock electronics; P, polarizer; (P)BS, (polarizing) beam splitter. (b) Relevant level scheme of the four-wave mixing process in a cloud of 87Rb atoms. (c) Relevant level scheme of the single 87Rb atom in the dipole trap. The probe photons are resonant with the closed transition |g〉=5 S1/2, F=2, mF=−2 to |e〉=5 P3/2, F=3, mF=−3.

Back to article page