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GALNT14 promotes lung-specific breast cancer
metastasis by modulating self-renewal and
interaction with the lung microenvironment
Ki-Hoon Song1, Mi So Park1, Tulip S. Nandu2, Shrikanth Gadad2, Sang-Cheol Kim3 & Mi-Young Kim1,4

Some polypeptide N-acetyl-galactosaminyltransferases (GALNTs) are associated with cancer,

but their function in organ-specific metastasis remains unclear. Here, we report that

GALNT14 promotes breast cancer metastasis to the lung by enhancing the initiation of

metastatic colonies as well as their subsequent growth into overt metastases. Our results

suggest that GALNT14 augments the self-renewal properties of breast cancer cells (BCCs).

Furthermore, GALNT14 overcomes the inhibitory effect of lung-derived bone morphogenetic

proteins (BMPs) on self-renewal and therefore facilitates metastasis initiation within the lung

microenvironment. In addition, GALNT14 supports continuous growth of BCCs in the lung by

not only inducing macrophage infiltration but also exploiting macrophage-derived fibroblast

growth factors (FGFs). Finally, we identify KRAS-PI3K-c-JUN signalling as an upstream

pathway that accounts for the elevated expression of GALNT14 in lung-metastatic BCCs.

Collectively, our findings uncover an unprecedented role for GALNT14 in the pulmonary

metastasis of breast cancer and elucidate the underlying molecular mechanisms.
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B
reast cancer metastasizes to many organs, including the
lung, bones and brain, each of which imposes different
requirements on incoming cancer cells for their survival

and subsequent outgrowth into overt metastases1,2. Thus, organ-
tropic metastatic cells must possess the following abilities: (1) to
initiate metastatic colonies against anti-metastatic signals
produced by the destination organ and (2) to exploit the newly
encountered microenvironment for the establishment of clinical
metastases3,4. The acquisition of organ-specific metastatic
potential by breast cancer cells (BCCs) is generally achieved by
specific sets of genes that can modulate the intrinsic cellular
functions of cancer cells themselves and/or their crosstalk with
stromal components5–8.

O-glycosylation, the attachment of monosaccharides to Ser and
Thr residues on acceptor proteins, is one of the most common
post-translational modifications and regulates various biological
processes, including cell growth, signalling, protein stability
and trafficking, and cell adhesion9–11. O-linked N-acetyl
galactosamine (GalNAc) glycosylation (referred to as O-Gal
NAcylation) is one class of O-glycosylation that is initiated by the
transfer of GalNAc from UDP-GalNAc to acceptor proteins
by a large family of enzymes, called polypeptide N-acetyl
galactosaminyl transferases (GALNTs)12,13. To date, 20 GALNT
family members have been identified in humans, and these
isozymes have been shown to exhibit differential but overlapping
substrate specificities and cell type-dependent expression
patterns14,15.

In addition to their roles in normal cellular processes, the
altered expression of GALNTs, accompanied by changes in
O-glycan compositions, has been found in several disease states,
including cancer9,10,16. However, the functional roles of GALNTs
identified to date in cancer are mostly limited to their
involvement in cancer cell motility or growth15,17–21. Further-
more, the potential function of GALNTs on cancer progression,
especially in site-specific metastasis, is poorly understood.

Thus, we set out to identify the GALNT(s) that promote(s) the
organ-specific metastasis of breast cancer and to investigate the
underlying mechanisms. Our study reveals that GALNT14

specifically promotes breast cancer metastasis to the lung, by
accelerating the initiation of metastatic colonies as well as their
subsequent growth into macrometastases. Specifically, we show
that GALNT14 enhances the aforementioned processes by
enabling BCCs to (1) overcome the inhibitory effect of lung-
derived bone morphogenetic proteins (BMPs) on self-renewal,
(2) create a favourable microenvironment in the lung and
(3) exploit growth signals produced by stromal cells in the lung.
Furthermore, we provide molecular insights on how GALNT14
orchestrates these processes.

Results
GALNT14 expression is selectively linked to lung metastasis. To
identify a GALNT(s) that contribute(s) to the breast cancer
metastasis, we first searched for the GALNT family member(s)
whose expression in primary breast tumours correlated with a
higher risk of distant metastasis. Kaplan–Meier analysis of pub-
lically available microarray data22 revealed that only GALNT14
was strongly associated with distant metastasis-free survival
(DMFS) (Fig. 1a and Supplementary Fig. 1a).

To further assess the prognostic value of GALNT14 in breast
cancer, the association between GALNT14 expression and organ-
specific metastasis was analysed in a combined microarray data
set (EMC192, MSK82 and EMC286)5,8. Interestingly, primary
tumours with high GALNT14 expression exhibited a significant
association with decreased lung metastasis-free survival (MFS),
but not with brain or bone MFS (Fig. 1b). Furthermore, this
association was still observed in the combined EMC192/MSK82
data set, which only consists of advanced breast cancers (Fig. 1c
and Supplementary Table 1). When individually analysed,
GALNT14 exhibited a statistically significant association with
lung MFS in the EMC192 cohort. In the MSK82 data set,
GALNT14 showed a clear tendency to lung metastasis-specific
association (Supplementary Fig. 1b). In contrast to advanced
breast cancers, GALNT14 expression levels in early-stage tumours
(EMC286)5 had no association with lung MFS (Fig. 1d and
Supplementary Fig. 1c).
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Figure 1 | GALNT14 expression is specifically associated with breast cancer relapse to the lung. (a) Kaplan–Meier plot of distant metastasis-free survival

(DMFS) of breast cancer patients, stratified by expression of GALNT14 in their primary tumours. (b–d) Lung, bone or brain metastasis-free survival (MFS)

in the combined cohort of EMC192, EMC286 and MSK82 (b) or EMC192 and MSK82 (c), based on the expression of GALNT14 in primary tumours.

Kaplan–Meier analysis of lung MFS in the EMC286 cohort (d). P values were calculated using a log rank test.
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Taken together, our data indicate that GALNT14 expression
correlates with lung metastasis in patients with advanced breast
cancer.

GALNT14 enhances the lung colonization ability of BCCs.
Given the clinical evidence suggesting a potential role of
GALNT14 in pulmonary metastasis, we sought to experimentally
evaluate this possibility. We first analysed the expression of all 20
GALNT family members in the parental MDA-MB-231 BCC line
(hereafter 231-Par) and 231-LM2, a highly lung-metastatic sub-
line derived from 231-Par (ref. 23). In accordance with clinical
data analysis, GALNT14 expression showed the greatest increase
in 231-LM2 cells (Fig. 2a). Similarly, lung-metastatic mouse
mammary tumour cell lines exhibited increased GALNT14
expression compared with those with no detectable lung-meta-
static potential (Supplementary Fig. 2a)24.

Next, we investigated whether GALNT14 is required for
lung colonization by BCCs. shRNA-mediated knockdown
of GALNT14 markedly decreased overall O-GalNAcylation in
231-LM2 cells, which was restored in the GALNT14-rescued cells
(Fig. 2b and Supplementary Fig. 2b). This finding suggests that
GALNT14 is one of the major contributors to O-GalNAcylation
in these cells. More importantly, GALNT14 knockdown con-
siderably attenuated lung colonization by 231-LM2 cells (Fig. 2c),
whereas restoring its expression recovered lung-metastatic
activity (Fig. 2d). Similarly, GALNT14 knockdown in CN34-
LM1, a lung-metastatic derivative of another triple-negative
BCC line CN34 (ref. 25), reduced lung metastasis (Fig. 2e and
Supplementary Fig. 2c). Conversely, the ectopic expression of
GALNT14 in 231-Par cells enhanced overall O-GalNAcylation
and lung colonization in an enzymatic activity-dependent
manner26 (Fig. 2f and Supplementary Fig. 2d,e) without causing
significant changes in their general growth in the primary site
(Supplementary Fig. 2f). Furthermore, GALNT14 overexpression
in the very weakly metastatic MCF7 cell line increased
their pulmonary metastatic potential, resulting in shorter overall
survival (Fig. 2g,h and Supplementary Fig. 2g). Thus, our
data strongly suggest that GALNT14 plays a critical role in
lung colonization by BCCs.

Our clinical data analysis indicated that GALNT14 may
promote lung-specific metastasis of BCCs (Fig. 1b,c). Thus, we
examined whether GALNT14 contributes to breast cancer
metastasis to other organs, including the bones and brain. In
contrast to a considerable increase in lung metastasis by
GALNT14-overexpressing 231-Par cells (Fig. 2f), no significant
changes were observed in the formation of bone or brain
metastases (Fig. 2i,j). Further supporting this observation, the
silencing of GALNT14 in 231-BrM2 cells (Supplementary
Fig. 2h), a brain-metastatic subline of 231-Par, had no effect on
their brain-metastatic potential (Fig. 2k).

Collectively, our results suggest that GALNT14 selectively
potentiates breast cancer metastasis to the lung.

GALNT14 confers self-renewal capability in BCCs. To delineate
the cellular mechanisms by which GALNT14 promotes pul-
monary metastasis, we first examined whether GALNT14 affects
the following intrinsic properties of BCCs that are generally
associated with increased metastatic potential: (1) general growth
rate in vitro; (2) resistance to detachment-induced programmed
cell death, that is, anoikis; (3) adhesion to extracellular matrix and
endothelial cells; (4) invasion and migration; and (5) epithelial-
mesenchymal transition. GALNT14 knockdown had no effect on
any of these characteristics (Supplementary Fig. 3a–g), which
indicates that GALNT14 promotes lung metastasis by mechan-
isms distinct from the aforementioned processes.

Based on these data, we then considered a potential role of
GALNT14 in the later stages of the metastatic process, such as the
initiation of metastatic colonies and their subsequent outgrowth
in the lung parenchyma. To this end, we first examined whether
GALNT14 confers BCCs with self-renewal ability, which is often
associated with the metastasis-initiating potential of BCCs27,28.
Interestingly, GALNT14 knockdown in 231-LM2 and CN34-LM1
significantly impaired sphere formation (Fig. 3a,b). Likewise,
the ectopic expression of the wild-type GALNT14, but not the
catalytic mutant, increased the sphere-forming capabilities of
231-Par and MCF7 cells (Fig. 3c,d). Thus, our findings indicate
that GALNT14 may endow BCCs with lung-metastatic potential
by enhancing self-renewal abilities.

GALNT14 promotes mammary tumour initiation. It has been
suggested that the self-renewal abilities of BCCs are closely
associated with their tumour-initiating abilities in vivo29. Thus,
the enhanced self-renewal of BCCs conferred by GALNT14 led us
to examine the role of this enzyme during the initial stage of
mammary tumour formation. To this end, we inoculated mouse
mammary fat pads (MFPs) with control or GALNT14-silenced
231-LM2 cells at two different concentrations (5� 105 or 5� 104)
and monitored early tumourigenesis by measuring
bioluminescent signals emitted from MFPs. Interestingly,
GALNT14 knockdown attenuated the initial growth of
mammary tumours only when 5� 104 cells were injected,
which led to decreased tumour volume at the later stage
(Fig. 3e,f). This finding is in accordance with previous studies
showing that the differences in tumour-initiating abilities of
BCCs are generally observed only when limited numbers of cells
are implanted30,31. Collectively, our data suggest that GALNT14
not only promotes lung metastasis but also mammary tumour
initiation. This is in accordance with previous studies showing
that the genes that promote organ-specific metastasis can also
contribute to primary tumour formation6,23,30,32.

GALNT14 enhances BCC self-renewal by suppressing BMP
signalling. Lung-metastatic BCCs must be able to initiate meta-
static colonies against anti-metastatic signals produced by
the lung. Since our results implied the role for GALNT14 in
promotion of self-renewal and lung-specific metastasis, we
investigated whether GALNT14 enables BCCs to overcome the
inhibitory effect of lung-derived anti-metastatic signals on self-
renewal. To this end, we analysed the sphere-forming abilities of
control and GALNT14-knockdown 231-LM2 cells in the presence
of BMPs because BMPs are highly present in the lung compared
with other organs and they are known to prevent the self-renewal
of incoming BCCs in the lung parenchyma30. Interestingly,
GALNT14-silenced 231-LM2 cells exhibited increased
susceptibility to the BMP-mediated suppression of sphere for-
mation (Fig. 4a). In addition, inhibiting BMP signalling by
DMH1, the BMP receptor (BMPR) kinase inhibitor, greatly
increased sphere formation by GALNT14-silenced 231-LM2
(Fig. 4b) while causing only a minimal increase with control
231-LM2 cells. Similar results were observed with CN34-LM1
(Fig. 4c). Thus, our data support that GALNT14 allows BCCs to
overcome the inhibitory effect of BMPs on BCC self-renewal.

To further delineate the mechanism by which GALNT14
enables BCCs to resist the suppressive effect of BMPs on self-
renewal, we analysed downstream BMP signalling. The BMP
signalling cascade is initiated by the binding of BMP ligands to
heteromeric type I-type II receptor complexes, which subse-
quently induces the phosphorylation of SMAD1/5/8 and their
interaction with SMAD4. These proteins then translocate to the
nucleus, where they regulate the expression of their target
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genes33. Notably, GALNT14 knockdown in 231-LM2 and CN34-
LM1 cells led to a greater increase in the BMP-induced
phosphorylation of SMAD1/5/8 compared with the control
cells (Fig. 4d,e), and this phosphorylation was accompanied
by increased interactions between pSMAD1/5/8 and SMAD4
(Supplementary Fig. 4a). Thus, our data indicate that GALNT14
suppresses BMP signalling and therefore, promotes BCC self-
renewal within the BMP-rich lung microenvironment.

The BMP pathway is closely related to the TGFb pathway, and
they often operate antagonistically34. Thus, we examined whether
GALNT14 exerts its self-renewal promoting effect on BCCs by
orchestrating crosstalk between these two pathways. In contrast
to the significant increase in BMP-induced phosphorylation
of SMAD1/5/8 upon GALNT14 knockdown (Fig. 4d), no changes
in TGFb-induced SMAD2/3 phosphorylation, an indicator of
activated TGFb signalling, was observed (Supplementary
Fig. 4b,c). Furthermore, GALNT14 knockdown had no effect on
the interaction between pSMAD2/3 and SMAD4 (Supplementary
Fig. 4d). Therefore, these data support that GALNT14-induced
self-renewal is most likely due to direct suppression of the BMP
signalling by GALNT14 rather than the activation of the TGFb
pathway.

The O-GalNAcylation of cell-surface receptors by GALNTs has
been shown to regulate downstream signalling cascades20,35,36.
Since our data suggest that GALNT14 inhibits BMP signalling,
we examined whether GALNT14 exerts this effect by the
O-GalNAcylation of BMPRs. To this end, we transiently

expressed the BMPR 1A (ALK3) or Activin receptor IIB (ActR-
IIB), one of the type II receptors, and performed pull-down assays
with VVA (vicia villosa lectin), which specifically binds to
GalNAc residues on modified proteins. We observed a marked
increase in O-GalNAcylation of ALK3, but not ActR-IIB, upon
the co-expression of GALNT14 (Fig. 4f), and this increase was
ablated by benzyl-GalNAc, a commonly used O-GalNAcylation
inhibitor (Supplementary Fig. 5a). Furthermore, the
O-GalNAcylation of endogenous ALK3 was detected in 231-
LM2 cells, which was abrogated upon GALNT14 knockdown
(Supplementary Fig. 5b). Our data suggest that the GALNT14-
mediated O-GalNAcylation of ALK3 may impair the BMP
responsiveness of BCCs, which subsequently enhances their self-
renewal.

SOX4 is a key mediator of GALNT14 in lung metastasis.
Having uncovered the role of GALNT14 in promoting BCC
self-renewal, we then sought to identify a downstream effector of
GALNT14 in this process. To this end, we searched for genes
whose expression was regulated by GALNT14 by performing a
genome-wide RNA-seq analysis. GALNT14 knockdown in 231-
LM2 led to 780 up- and 921 downregulated genes with a p value
smaller than 0.05, while its ectopic expression in 231-Par cells
resulted in 122 up- and 176 downregulated genes. The overlap
between these two data sets yielded a list containing 17 up- and
13 downregulated genes by GALNT14 (Fig. 5a, Venn diagram).
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cells. Single cell populations were plated into ultra-low attachment plates and the number of spheres over 100mm was counted after 7 days. Representative
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control vector (VEC), wild-type (WT) or mutant (MUT) GALNT14 were used. Scale bar, 50mm. n¼ 6. (e) Normalized photon flux from MFPs inoculated

with 231-LM2 cells expressing shCntr or shGALNT14 (left) and their comparative tumour growth rates (right) upon injection of 5� 105 cells. (f) Similar

experiments as in e except 5� 104 cells were injected. P values in a–d were calculated using two-tailed unpaired Student’s t-test and e,f using one-tailed

Mann–Whitney test. Data are mean±s.e.m.
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Among the 17 upregulated genes (Fig. 5a heat map and
Supplementary Table 2), the progenitor transcription factor Sex-
Determining Region Y-box4 (SOX4) caught our attention for the
following reasons: (1) its expression exhibited the greatest fold-
change upon both knockdown and overexpression of GALNT14;
(2) SOX4 has been shown to be regulated by BMP signalling,
which was identified as a target pathway of GALNT14 in the
current study; and (3) increased SOX4 expression in glioma-
initiating cells has been reported37. In breast cancer, SOX4 is
associated with cancer progression25,38–40, yet its role during
the metastasis initiation step remains unclear. Furthermore, the
contribution of GALNTs to pulmonary metastasis through the
regulation of SOX4 is unknown.

Quantitative real-time PCR (qRT-PCR) analysis confirmed
that GALNT14 indeed upregulates SOX4 expression in 231 and
CN34 cells (Supplementary Fig. 6a–c). More importantly, BMP
treatment markedly decreased SOX4 transcripts in GALNT14-
silenced 231-LM2 cells while causing no significant changes in
control and rescued cells (Fig. 5b). This suggests that GALNT14
increases SOX4 transcription in lung-metastatic BCCs by
suppressing BMP signalling. Further supporting this, 231-LM2
cells, which express elevated GALNT14 (Fig. 2a) and SOX4
(ref. 25) compared with 231-Par cells, exhibited attenuated BMP
responsiveness as well as no changes in SOX4 expression upon

BMP4 treatment. In contrast, BMP treatment markedly reduced
SOX4 transcripts in 231-Par cells (Supplementary Fig. 6d).

Based on our findings indicating a potential link among
GALNT14, BMP and SOX4, we examined whether SOX4
functions as a key mediator of GALNT14 in BCC self-renewal.
The re-expression of SOX4 in GALNT14-silenced 231-LM2
recovered their sphere-forming activity to a level similar to
control cells without affecting the general growth rate, while
SOX4 overexpression in control 231-LM2 caused no further
increase in sphere formation (Fig. 5c and Supplementary
Fig. 6e,f). Interestingly, reduced SOX4 level upon GALNT14
knockdown also led to decreased expression of the embryonic
stem cell markers SOX2 and OCT4 (Supplementary Fig. 6g,h) and
their expression levels were restored in SOX4-rescued 231-LM2
cells (Supplementary Fig. 6i). Thus, these data indicate that SOX4
is the main mediator of GALNT14 in BCC self-renewal,
potentially by regulating SOX2 and OCT4 expression. Finally,
the re-expression of SOX4 in GALNT14-silenced 231-LM2 cells
recovered their lung-metastatic potential (Fig. 5d).

Collectively, our findings suggest that GALNT14 upregulates
SOX4 expression by suppressing BMP signalling in lung-
metastatic BCCs, which then enhances BCC self-renewal
and thus, the initiation of metastatic colonies in the lung
parenchyma.
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Figure 4 | GALNT14 promotes self-renewal of BCCs by suppressing BMP signalling. (a) The role of GALNT14 in overcoming inhibitory effects of BMPs

on self-renewal. Top: The number of spheres formed by the indicated 231-LM2 cells in the presence of PBS or BMP4 (30 ng ml� 1). Bottom: Representative

images of spheres. Images of single sphere are shown in the inset. shG14 indicates shGALNT14. Scale bar, 500mm. n¼ 6. (b) Similar experiment as in a

except that cells were treated with DMSO or BMPR kinase inhibitor DMH1 (5mM). Scale bar, 500mm. n¼6. (c) Similar experiment as in a,b except that

control (shCntr) and GALNT14-silenced (shG14) CN34-LM1 cells were used. BMP4 (10 ng ml� 1). n¼6 (d,e) The indicated 231-LM2 cells (d) and CN34-

LM1 cells (e) were treated with PBS or BMP4 (30 ng ml� 1 for 231-LM2, 10 ng ml� 1 for CN34-LM1), followed by immunoblotting analyses with antibodies

against phospho-SMAD1/5/8, total SMAD1, and SMAD5. (f) O-GalNAcylation of BMPRs. HEK 293T cells were transfected with BMPR1A (ALK3), ActR-IIB

and GALNT14 expression vectors as indicated and subjected to pull-down with Vicia villosa lectin (VVA)-agarose, followed by the western blot analyses

with the indicated antibodies. P values were calculated using two-tailed unpaired Student’s t-test. **Po0.001; ***Po0.0001. Data in a–c are mean±s.e.m.

from three independent experiments and western blots in d–f are representatives of two to three independent experiments.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13796

6 NATURE COMMUNICATIONS | 7:13796 | DOI: 10.1038/ncomms13796 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


GALNT14 enables BCCs to exploit the lung microenviron-
ment. In addition to initiating metastatic colonies, lung-meta-
static BCCs recruit various types of stromal cells to create a
favourable microenvironment for their continuous growth
in the lung1,41. Thus, we explored the role of GALNT14 in this
process. Lung nodules formed by control 231-LM2 cells exhibited
extensive staining for a macrophage marker (F4/80). Moreover,
we observed that these nodules were associated with M2-type
macrophages (CD206þ ), which are known for their tumour-
promoting functions (Supplementary Fig 7a). In contrast to
control nodules, lesions formed by GALNT14-knockdown
231-LM2 cells contained a markedly reduced number of
macrophages, which was restored in those formed by rescued
cells (Fig. 6a). Likewise, lung metastases formed by 231-Par cells
overexpressing wild-type GALNT14 exhibited increased
macrophage infiltration compared with the control lesions
(Supplementary Fig. 7b). Supporting our in vivo data,
conditioned media (CM) from GALNT14-silenced 231-LM2
cells and overexpressing 231-Par cells impaired and facilitated
the transwell migration of RAW 264.7 mouse macrophage cells
(RAW cells), respectively (Fig. 6b). Taken together, our data
indicate that GALNT14 plays a role in the recruitment of
macrophages to the site of metastases, most likely by modulating
the secretion of cyto/chemokines.

To identify a secreted factor(s) that mediate(s) RAW cell
recruitment by GALNT14-expressing BCCs, we compared the
levels of 80 cyto/chemokines between CM from control and
GALNT14-knockdown 231-LM2 cells. Intriguingly, GALNT14
knockdown reduced the production of several cyto/chemokines,
including CXCL1 (Supplementary Fig. 7c), which is known to
function in myeloid cell recruitment42,43. Notably, while the

GALNT14-dependent increase in CXCL1 production was
confirmed by ELISA, no change in its transcript level was
observed (Supplementary Fig. 7d,e). These findings indicate
that GALNT14 regulates CXCL1 at the post-transcriptional
level. More importantly, CM from CXCL1-silenced 231-LM2
cells considerably reduced RAW cell migration while CXCL1
knockdown in shGALNT14-expressing 231-LM2 cells caused no
further decrease (Fig. 6c and Supplementary Fig. 7f). Conversely,
the addition of recombinant CXCL1 to the CM from GALNT14-
depleted 231-LM2 cells recovered RAW cell migration to the level
similar to what we observed with control cells (Supplementary
Fig. 7g). Thus, our data support that GALNT14-expressing BCCs
may enhance macrophage recruitment by promoting CXCL1
production.

Once stromal cells are recruited to metastatic sites by BCCs,
they produce various growth-stimulating factors that can be
exploited by metastatic BCCs. Thus, we examined whether
GALNT14 allows BCCs to better respond to macrophage-derived
growth stimuli. Co-culture with RAW cells led to activation of
the ERK1/2 and AKT pathways in 231-LM2 cells, which
are associated with BCC survival and growth. However, RAW
cell-mediated activation of these pathways was not observed in
GALNT14-knockdown 231-LM2 cells (Fig. 6d). Accordantly, co-
culture with RAW cells enhanced the growth of control but not
GALNT14-knockdown 231-LM2 cells (Fig. 6e). Similar results
were observed with CN34-LM1 and MCF7 cells (Supplementary
Fig. 8a,b). Furthermore, macrophage-induced growth of 231-LM2
cells was maintained even under the conditions in which the
RAW and 231-LM2 cells were separated by a permeable
membrane44, indicating that this effect is mediated by secreted
factor(s) from RAW cells (Fig. 6f). Supporting our in vitro data,
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immunohistochemical analysis with a proliferation marker Ki-67
showed reduced proliferation of GALNT14-silenced 231-LM2
cells, whereas wild-type GALNT14-overexpressing 231-Par cells
exhibited increased proliferation in the lung (Fig. 6g,h).

Collectively, our data suggest that GALNT14-expressing BCCs
secure successful metastatic growth not only by modifying the
lung microenvironment but also by exploiting macrophage-
derived signals for their growth.

GALNT14 promotes BCC growth by activating FGF signalling.
To investigate the molecular mechanisms by which GALNT14
enhances the macrophage-stimulated growth of BCCs, we further
inspected our RNA-seq data (Fig. 5a). Our findings indicated that
the macrophage-induced BCC growth is mediated by a secreted
factor(s) and involves the activation of AKT and ERK signalling.
Thus, we searched for the signalling pathway(s) that is (are)
triggered by cell-surface receptors and subsequently activate(s)
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the AKT and or ERK pathways. Interestingly, our analyses
revealed fibroblast growth factor (FGF)-responsive genes
including ets variant 1 (ETV1) and sprouty homologue 1 (SPRY1)
as downstream targets of GALNT14 (Fig. 5a and Supplementary
Fig. 9a–c). The activation of FGF signalling is initiated by the
binding of FGF ligands to their cognate FGF receptors (FGFRs)
and often involves the activation of several downstream signalling
cascades, such as the AKT and ERK pathways45,46. In cancer, it
has been suggested that deregulated FGF signalling play
both cancer-promoting and suppressive roles47–50. However,
the GALNT14-mediated regulation of FGF signalling and its
functional role in the lung metastasis of breast cancer remains
unknown.

To test the possibility that GALNT14 supports the macro-
phage-stimulated growth of BCCs by increasing responsiveness to
macrophage-derived FGFs, we examined whether inhibiting FGF
signalling abolishes the macrophage-induced growth of
GALNT14-expressing BCCs. Treatment with the pan-FGFR
kinase inhibitor BGJ398 abrogated the macrophage-stimulated
growth of control 231-LM2 and CN34-LM1 cells, while no
significant effect was observed with GALNT14-silenced cells
(Fig. 7a,b). Interestingly, the FGFR1/3-specific inhibitor
PD173074 not only exhibited a similar inhibitory effect on
macrophage-induced BCC growth as BGJ398 (Fig. 7a,b) but also
caused a loss of pERK1/2 and pAKT (Fig. 7c). These data indicate
that GALNT14-mediated activation of FGF signalling mainly
engages FGFR1 and 3. Consistent with this, the knockdown of

FGFR1 and 3 (Supplementary Fig. 9d,e) completely abrogated
macrophage-induced growth of control 231-LM2 cells while no
further decrease was observed with GALNT14-silenced 231-LM2
cells (Fig. 7d).

Given these findings, we then examined whether the activation
of FGF signalling by GALNT14 involves the glycosylation of
FGFR1 and/or 3. We observed GALNT14-dependent O-GalNA-
cylation of both exogenously-expressed and endogenous FGFR1,
but not FGFR3 (Fig. 7e and Supplementary Fig. 9f), which further
supports the GALNT14-mediated activation of FGF signalling in
BCCs.

Next, we sought to identify macrophage-derived FGF(s) that
function(s) as a growth-stimulating factor for GALNT14-
expressing BCCs. To this end, we tested whether FGF2
(b-FGF), known to be secreted by tumour-associated macro-
phages51, is involved in this process. Notably, knockdown
of Fgf2 in RAW cells reduced the macrophage-induced growth
of control, but not GALNT14-knockdown 231-LM2 cells (Fig. 7f
and Supplementary Fig. 9g). This result suggests that
macrophage-derived FGF2 at least plays a partial role in
stimulating the growth of GALNT14-expressing BCCs although
we cannot exclude the contribution of other FGFs.

Collectively, our data suggest that O-GalNAcylation of FGFR1
by GALNT14 primes lung-metastatic BCCs for the activation of
FGF signalling, conferring their successful growth upon receiving
macrophage-derived FGFs (for example, FGF2) in the lung
parenchyma.
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The KRAS-PI3K pathway upregulates GALNT14 in BCCs.
Having uncovered the mechanisms underlying GALNT14-
mediated breast cancer metastasis to the lung, we next sought
to identify the upstream regulators that are responsible for the
elevated GALNT14 expression in lung-metastatic BCCs.

Metastatic cancer cells often exhibit the activation of several
signal transduction pathways, which is generally associated with
the altered expression of downstream target genes. To identify the
upstream pathway(s) that contributes to transcriptional induction
of GALNT14 in lung-metastatic BCCs, we searched for signalling
pathways that are hyper-activated in 231-LM2 compared with
231-Par cells. We found a dramatic increase in the phospho-AKT
level in 231-LM2, which suggested activated PI3K signalling in
these cells (Fig. 8a). In addition, the PI3K inhibitor LY294002
reduced the GALNT14 transcript levels (Fig. 8b) while the
inhibition of NOTCH or TGF signalling pathways, previously
shown to be activated in lung-metastatic BCCs29,52, did not alter
its expression (Supplementary Fig. 10a,b). These data suggest a
specific role of the PI3K pathway in the upregulation of
GALNT14 in lung-metastatic BCCs.

The PI3K pathway can be triggered by various mechanisms,
including the activation of KRAS53,54. Thus, we examined

whether KRAS controls GALNT14 expression by activating the
PI3K pathway. KRAS knockdown led to reduced phospho-AKT
as well as GALNT14 transcript levels (Fig. 8c), supporting the role
for the activated KRAS-PI3K pathway in GALNT14 expression in
lung-metastatic BCCs.

The KRAS-PI3K pathway modulates the activities of several
transcription factors, leading to changes in the expression of
downstream target genes54,55. Therefore, we searched for a
potential transcription factor that is activated by the KRAS-PI3K
signalling cascade and regulates GALNT14 expression. The
examination of the GALNT14 promoter region uncovered two
c-JUN-binding sites located approximately 2.4 kb upstream and
650 bp downstream of transcription start site. This caught our
attention because the KRAS-PI3K pathway has been shown to
regulate both the transcriptional activity and stability of c-JUN by
modulating its phosphorylation54,56. Notably, the activation of
the PI3K pathway in 231-LM2 coincided with a marked increase
in phosphorylated c-JUN at Ser63/Ser73, the active form
of the protein (Fig. 8d). This finding led us to test whether the
KRAS-PI3K pathway governs GALNT14 expression by regulating
the c-JUN protein. KRAS knockdown and the inhibition of
PI3K activity decreased total and phospho-c-JUN level in both
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231-LM2 and CN34-LM1 cells (Fig. 8e,f and Supplementary
Fig. 10c,d). Moreover, c-JUN knockdown reduced GALNT14
transcription in these cells (Fig. 8g,h) while the overexpression
of c-JUN in 231-Par cells increased its expression (Fig. 8i).
This suggests that c-JUN positively regulates GALNT14
expression at the transcription level.

Collectively, our findings demonstrate that the hyper-activated
KRAS-PI3K pathway in lung-metastatic BCCs promotes the
c-JUN-mediated transcription of GALNT14.

Discussion
Accumulating evidence suggests that while there exists a class of
genes that enhances the general metastatic potential of cancer
cells, others contribute to organ-specific metastasis1,8,29,57. The
latter class of genes generally plays a role in the late stages of
the metastatic process, such as the initiation of metastatic colonies
and their subsequent outgrowth into macrometastases. In the
present study, we revealed that GALNT14 specifically promotes
breast cancer metastasis to the lung by accelerating both of these
events in the lung parenchyma (Fig. 9).

The initiation of metastasis at a distal site is an extremely
challenging task for cancer cells due to a number of anti-
metastatic signals produced by the destination organ. Thus,
it is thought that metastasis-initiating cells possess stem cell-like
properties, including the ability to self-renew against these inhi-
bitory signals. Consistent with this notion, our study demon-
strated that GALNT14 allows BCCs to self-renew in the presence
of the lung-derived anti-metastatic signals BMPs, by suppressing
BMP signalling through BMPR glycosylation. Recently, a study by
Gao et al. indicated that lung-metastatic BCCs secrete an
increased level of a BMP-antagonist called COCO, which blocks

the binding of lung-derived BMPs to their cognate receptors and
thus, facilitates the reactivation of BCCs from dormancy30.
Therefore, it is plausible that BCCs overcome the inhibitory effect
of BMPs on self-renewal by a combination of these two
mechanisms. Further evidence supporting the stem cell-like
properties of GALNT14-expressing BCCs include: (1) GALNT14
induces SOX4 expression, which subsequently increases
transcription of stem cell-associated factors SOX2 and OCT4;
and (2) GALNT14 augments mammary tumour initiation when a
limited number of BCCs are implanted.

The establishment of metastatic colonies requires constant
communication between cancer cells and stromal components in
the secondary organ. Our studies indicated that GALNT14
promotes macrophage recruitment by enhancing the production
of CXCL1. Based on our data demonstrating that GALNT14 does
not upregulate CXCL1 at the transcriptional level, we speculate
that the enhanced CXCL1 production could be due to increased
stability of CXCL1 by GALNT14-mediated O-glycosylation.
Supporting this idea, the O-glycosylation of several cytokines
has been shown to increase their stability58. However, the exact
molecular mechanism through which GALNT14 regulates the
production of CXCL1 warrants further investigation.

In addition to its role in macrophage recruitment by BCCs, our
study demonstrated that GALNT14 enables BCCs to exploit
macrophage-derived FGFs for their continuous growth in
the lung. The supporting evidence includes: (1) the association
between increased macrophage infiltration and proliferation
of GALNT14-expressing BCCs in vivo; (2) the requirement of
GALNT14 in macrophage-induced growth of BCCs; (3) the
ablation of this growth advantage upon the pharmacological
inhibition or genetic knockdown of FGFR1 and 3; (4) the loss
of macrophage-induced BCC growth upon the depletion of
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Figure 9 | Proposed working model of GALNT14-mediated lung-specific metastasis of breast cancer. Left: the KRAS-PI3K pathway, which is activated in

BCCs with high lung-metastatic potential, induces the c-JUN-mediated transcriptional upregulation of GALNT14. GALNT14-expressing BCCs possess the

ability to self-renew against lung-derived BMPs, potentially via GALNT14-mediated BMPR O-GalNAcylation, which results in the attenuation of BMP
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FGF2 in macrophages; and (5) the GALNT14-mediated glycosy-
lation of FGFR1. Of note, while FGFR3 knockdown showed
similar results as that of FGFR1, we only observed the
O-GalNAcylation of FGFR1 but not FGFR3. Aside from technical
limitations, such as the sensitivities of antibodies, we speculate
that macrophage-mediated cancer cell growth may involve the
FGFR1-FGFR3 heterodimer, and this effect could be modulated
by the O-GalNAcylation of FGFR1. Supporting this idea, the
heterodimerization of different FGFRs59 and the role
of O-GalNAcylation in the dimerization of other cell-surface
receptors have been reported36,60.

The biological functions of GALNTs are linked to their
enzymatic activities. Accordingly, our data suggest that
GALNT14 may function through the glycosylation of BMPR1A
(ALK3) and FGFR1, which results in the suppression and
activation of the downstream signalling pathway, respectively.
Consistent with this possibility, a previous study reported that
ALK3 and ActR-IIB are O-GalNAcylated by Xenopus Galntl-1
and that ActR-IIB glycosylation prevents its dimerization with
BMPRI36. In addition, the O-GalNAcylation of FGFR2 by an
unknown GALNT has been shown to trigger the activation of
downstream signalling35. The biochemical mechanisms by which
the GALNT14-stimulated O-GalNAcylation of FGFR1 activates
the downstream cascade are currently under investigation. On the
basis of previous studies showing that the N-glycosylation of
FGFR1 and FGFR2 contributes to enhanced ligand binding and
proper localization of the receptors, respectively61,62, we presume
that O-GalNAcylation may activate FGF signalling by similar
mechanism. Alternatively, the O-GalNAcylation of FGFR1 may
facilitate the formation of receptor dimers as mentioned above.

The differential expression patterns of GALNT isozymes have
been reported. Although a few studies have shown that the
differential expression of microRNAs can regulate the expression
of certain GALNTs63–65, the molecular mechanisms controlling
the expression of different GALNT members are poorly
understood. The current study revealed that the activated
KRAS-PI3K-c-JUN pathway is responsible for the upregulation
of GALNT14, providing a mechanistic insight into its elevated
expression in lung-metastatic BCCs.

Supporting our experimental data, clinical data analysis
revealed that the elevated level of GALNT14 in primary breast
tumours specifically predicts lung relapse, suggesting the potential
use of GALNT14 expression in identifying patients with high risks
of pulmonary metastases. Recently, GALNT14 has been shown
to be associated with neuroblastoma, hepatocarcinoma, and
lung adenocarcinoma21,66,67. Furthermore, elevated GALNT14
expression has been proposed as a biomarker for TRAIL-sensitive
tumours60. However, we did not observe changes in TRAIL
sensitivity upon the ectopic expression of GALNT14 in 231-Par
cells (unpublished data), which is consistent with other studies
indicating that the GALNT14-mediated increase in TRAIL
sensitivity is a tumour type-dependent phenomenon.

In conclusion, our study not only uncovered a novel function
of GALNT14 in the lung metastasis of breast cancer and
delineated the underlying molecular mechanisms but also
suggests that this enzyme can be a potential therapeutic target
for breast cancer treatment. Further studies on the function of
other GALNT members in different subtypes of breast cancers
(Supplementary Data set 1) as well as other cancer types will
provide further insight into the diverse roles of GALNTs in
cancer progression and metastasis.

Methods
Materials. TGFbR inhibitor (SB431542), NOTCH inhibitor (DAPT), BMPR
inhibitor (DMH1), methylcellulose and O-glycosylation inhibitor (Benzyl 2-
acetamido-2-deoxy-a-D-galactopyranoside) were purchased from Sigma-Aldrich

(St Louis, MO). For PI3K inhibition, LY294002 was obtained from Calbiochem
(San Diego, CA). For FGFR inhibition, BGJ398 and PD173074 were purchased
from Selleckchem (Houston, TX). Recombinant human BMP4 and CXCL1 were
purchased from Peprotech (Rocky Hill, NJ).

Cell culture. MCF7, CN34-LM1, MDA-MB-231 and their metastatic derivatives
were kindly provided by Dr Joan Massague (Memorial Sloan Kettering Cancer
Center), and Dr Sohail Tavazoie (Rockefeller University)6. Human umbilical vein
endothelial cells (HUVEC) were purchased from LONZA (Basel, Switzerland) and
cultured in EGM-2 bullet kit media (LONZA)5. 4T1 derivatives and RAW 264.7
cells were provided by Drs Fred Miller (University of Michigan) and Suk-Jo Kang
(KAIST), respectively. CN34-LM1 cells were cultured in M199 medium containing
2.5% FBS, 10mg ml� 1 insulin, 0.5 mg ml� 1 hydrocortisone, 20 ng ml� 1 EGF
and 100 ng ml� 1 cholera toxin. All the other cells were cultured in in DMEM
supplemented with 10% FBS. The cell lines were recently authenticated by
DNA fingerprinting analysis and regularly tested for mycoplasma contamination.

Animal studies. All experiments using animals were done in accordance with
procedures approved by the Korean Advanced Institute of Science and Technology
Institutional Animal Care and Use Committee (IACUC). Age-matched (5 to 6
weeks) female NOD/SCID (Korea Research Institute Bioscience and Biotechnol-
ogy, Republic of Korea) or BALB/c nude mice (OrientBio, Republic of Korea) were
used for intravenous, intracardiac and MFP injections8,52. Tumour volume (V)
was measured semi-weekly using calipers and calculated using the formula
V¼ (length)� (width)2� 0.5. For intracardiac injection, MDA231-Par (2� 105) or
MDA231-BrM2 (1� 105) cells were re-suspended in 0.1 ml cold PBS and injected
into the left ventricle. A bioluminescent imaging (BLI) analysis was used to
measure bone or brain metastases using an IVIS Spectrum system (PerkinElmer,
Waltham, MA). For experimental lung metastasis assays, MDA231-LM2 (7� 104),
CN34-LM1 (6� 105) or MCF7 (2� 106) cells were intravenously injected and lung
colonization was quantified using BLI. Statistical methods to predetermine sample
size were not used and the experiments were not randomized. During experiments
and outcome analysis, the animal group allocations were not blinded.

Clinical data analysis. The overall DMFS was conducted through KM plotter
for breast cancer in http://kmplot.com/analysis website using 2014 version of
database22. Among 20 GALNTs, only 18 GALNT probes were suitable for DMFS
analysis. The probes used in analyses are: GALNT1 (201724_s_at), GALNT2
(217788_s_at), GALNT3 (203397_s_at), GALNT5 (229555_at) GALNT6
(228303_at), GALNT7 (218313_s_at), GALNT8 (220929_at), GALNT9
(229451_at), GALNT10 (212256_at), GALNT11 (219013_at), GALNT12
(218885_s_at) GALNT13 (236536_at), GALNT14 (219271_at), GALNT15
(228501_at), GALNT16 (230418_s_at), GALNT18 (1554079_at), GALNT19
(227434_at) and GALNT20 (233150_at). Median expression of each GALNT was
used to separate GALNT high/low patient group. MFS analysis was performed at
Proboco Informatics (Ithaca, NY). EMC192, EMC286, and MSK82 (GSE12276,
GSE2034 and GSE2603, respectively)5 were log-transformed and centred to the
mean of common genes present in both GPL96 (GSE2034 and GSE2603) and
GPL570 (GSE12276) microarray platforms. Finally, GALNT14 þ /� group
were identified based on mean GALNT14 expression.

Generation of GALNT14 catalytic mutant. GALNT14 mutant was generated by
substituting three amino acid residues in glycosyltransferase 1 (GT1) motif, which
were previously identified to be critical in enzymatic activity of mouse GALNT1
and conserved among all 20 human GALNT family members26. The substitutions
include Asp199-Asn, His201-Asp and Glu202-Gln.

Gene knockdown and overexpression. shRNA targeting for GALNT14 were
purchased from Sigma-Aldrich. Lentiviruses were produced in 293T cells and used
to infect 231-LM2 and CN34-LM1 cells. Target-specific siRNAs were obtained
from Bionner (Daejeon, Korea). A scrambled siRNA (siScr) were synthesized
and validated by Bionner. siGENOME SMARTpool siRNA targeting for KRAS
were purchased from Dharmacon (Life technologies, Carlsbad, CA). siRNAs were
transfected into cells by using Lipofectamine (Life technologies). Hairpin and
siRNA sequences used in this study are summarized in Supplementary Table 3.
The list of overexpression constructs is summarized in Supplementary Table 4.

Co-culture assay. Co-culture assay with BCCs and RAW 264.7 cell line was
performed as the following. For in contact co-culture assay, cancer cells were
seeded to 24-well plate. After 24 h, the media were replaced with fresh DMEM
media containing 0.2% FBS and starved for 12 h. Next, RAW 264.7 cells were
suspended with DMEM media containing 0.2% FBS and added to cancer cells.
For the separated co-culture experiments, we used transwell inserts (Corning,
Corning, NY) with a 0.4 mm pore size. RAW 264.7 cells were seeded into transwell
inserts and cultured for 3 days. Finally, cancer cell growth was analysed using
Luciferase assay system (Promega, Madison, WI).
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qRT-PCR analysis. Total RNA was isolated using Qiazol (Qiagen, Valencia, CA)
followed by chloroform extraction. First-strand cDNA was synthesized from 400 ng
of total RNA using SuperscriptII reverse transcriptase (Life technologies) according
to the manufacturer’s instructions. qRT-PCR assay was performed using SYBR
Green Real-time PCR Master Mix (Toyobo, Osaka, Japan) in a Real-Time PCR
machine CFX96 (Biorad, Hercules, CA) using the gene-specific primer sets.
Analysis of GALNT8, GALNT15, GALNT17, GALNT20, ANGPTL4, B2M,
MmGALNT14 and MmB2M mRNAs were detected using TaqMan Gene
Expression Assay (Life technologies). The gene-specific primers and TaqMan
assay ID used in this study were listed in Supplementary Table 5.

Western blot analysis. Whole-cell lysates were prepared using RIPA-B lysis
buffer containing 150 mM NaCl, 1 mM EDTA (pH 8.0), 20 mM Tris-Cl (pH 7.4),
1% NP-40, 0.5% sodium deoxycholate, 1% Triton X-100, 1 mM Na3VO4, 5 mM
NaF, 10% glycerol and protease inhibitor cocktail (Roche, basel, Switzerland). For
preparation of nuclear extracts, BCCs were washed using cold PBS and lysed with
nuclear extraction Buffer A containing 20 mM HEPES-KOH pH 7.9, 10 mM KCl,
1 mM EDTA, 5 mM NaF, 10 mM b-glycerophosphate, 1 mM Na3VO4, 1 mM DTT,
1% NP-40 and protease inhibitor cocktail, followed by incubation on ice for
15 min. The nuclear pellets were lysed in hypotonic Buffer B containing 20 mM
HEPES-KOH pH 7.9, 0.4 M NaCl, 1 mM EDTA, 5 mM NaF, 10 mM b-glycer-
ophosphate, 1 mM Na3VO4, 1 mM DTT and protease inhibitor cocktail. Equivalent
amounts of proteins were measured using BCA protein assay kit (Sigma-Aldrich)
and separated by electrophoresis on SDS-PAGE and then transferred to a
polyvinylidene difluoride (PVDF) membrane (Roche). Primary antibodies used in
this study are summarized in Supplementary Table 6. The original scan of western
blots are provided as Supplementary Fig. 11.

Genome-wide RNA-seq analysis. RNAs isolated from MDA231-LM2 cells
expressing shCntr or shGALNT14 and MDA231-Par cells expressing pBabe-Hygro
vector or GALNT14 were subjected to enrichment of polyAþ RNA using
Dynabeads Oligo (dT)25 (Invitrogen)68. Strand-specific RNA-seq libraries were
prepared from the polyAþ RNA68. The RNA-seq libraries were sequenced using
single-end methodology with a length of 50 nt (SE50) (two replicates each) using an
Illumina HiSeq 2500. The computational pipeline to analyse strand-specific RNA-
Seq data includes the following steps: RNA-Seq reads were aligned to the human
reference genome (NCBI 37, hg19) using the spliced read aligner TopHat version
1.4.0 (ref. 69). The bam files from TopHat were assembled using Cufflinks70. The
individual transcript assemblies from multiple RNA-Seq libraries are assembled
into one master transcriptome using Cuffmerge. This step is required for
differential expression analysis of the assembled transcripts. Finally, using
Cuffdiff comparisons of expression levels of genes from the different conditions
was performed. Heat map was generated by using online program ‘Matrix2png’;
http://www.chibi.ubc.ca/matrix2png/bin/matrix2png.cgi.

Oncosphere assays. Oncosphere assays were performed as previously descri-
bed30. Briefly, cancer cells were collected by using scraper and filtered using 40 mm
pore cell strainer (BD Biosciences). 0.5–2.5� 104 single cells were seeded into
6-well ultra-low binding plates (Corning) and cultured in Human mammary
epithelial cell (HuMEC) media (Life Technologies) containing 20 ng ml� 1 EGF,
5 mg ml� 1 insulin, 10 mg ml� 1 heparin, 40 ng ml� 1 basic FGF, 1X B27 supplement
without vitamin A and 0.02% methylcellulose for 7 days. Spheres over 100 mm
diameter were counted and pictured using Nikon ECLIPSE TS100 microscope.

Vicia villosa lectin (VVA) ELISA. For VVA ELISA, whole-cell lysates were pre-
pared using RIPA-B lysis buffer. RIPA-B was exchanged with PBS using centrifugal
filter units (Merck Millipore) which was repeated 4 times. 40 mg total proteins were
measured using BCA protein assay kit and coated onto the ELISA microplate
(Greiner bio-one, Neuburg, Germany) for 16 h at 4 �C. The total bound proteins
were washed with PBS containing 0.05% Tween 20 and treated with blocking
solution (Vector Labs, Burlingame, CA) for 2 h at 4 �C. Each well was washed three
times and added with 10 mg ml� 1 biotinylated VVA (Vector Labs) for 16 h at 4 �C.
Target proteins bound to biotinylated VVA were stained using Vectastain ABC kit
(Vector Labs). Absorbance was measured using a microplate spectrophotometer
(Berthold technologies, Wildbad, Germany) at 405 nm.

VVA pull-down assay. Cell lysates were collected using cell lysis buffer containing
120 mM NaCl, 40 mM Tris-Cl (pH 7.4), 1 mM EDTA (pH 8.0), 0.3% Chaps, 1 mM
Na3VO4 and protease inhibitor cocktail. 1 mg total proteins were subjected to pull-
down assay with agarose bound VVA (Vector Labs). After incubation in rotator for
16 h at 4 �C, protein-agarose bound VVA mixture was washed four times using
washing buffer containing 120 mM NaCl, 40 mM Tris-Cl (pH 7.4), 1 mM EDTA,
1 mM Na3VO4 and protease inhibitor cocktail. After centrifugation, the pellet was
added to 5X SDS buffer containing 60 mM Tris-Cl (pH 6.8), 25% glycerol, 2% SDS,
0.1% bromophenol blue and 5% b-mercaptoethanol and denatured by boiling.
Finally target proteins were detected by western blotting.

Immunohistochemistry and immunofluorescent staining. Metastatic lesions
were confirmed by histological analysis. At the end of animal experiment,
mice were killed and perfused with PBS through the left ventricle before tissues
were extracted. Extracted tissues were fixed with 4% paraformaldehyde, paraffin-
embedded or snap frozen in liquid nitrogen, and stained with hematoxylin and
eosin. For the Ki-67 staining, paraffin-embedded sections were stained with Ki-67
antigen antibody (Vector Labs) and detected with Vectastain ABC kit (Vector
Labs). For immunofluorescent staining, 10-mm-thick cryostat sections were stained
with antibody against mouse F4/80 at 1:500 dilution (MCA_497GA, Abd Serotec,
Raleigh, NC) followed by incubation with rhodamine-conjugated secondary anti-
body (Jackson ImmunoResearch, West Grove, PA). For CD206 staining, mouse
CD206-Alexa fluor 594 (No. 141726, Biolegend, San Diego, CA) was used at 1:100
dilution. Images were taken from fluorescent microscope (Zeiss).

Cell viability and anoikis assays. For cell viability assay, 500-1,000 cells were
seeded into 96-well plates and incubated for 3 or 6 days. Relative cell growth was
measured using CellTiter-Glo Luminescent Cell Viability Assay (Promega) in
96-well plates according to the manufacturer’s instructions. The luminescence
was determined by a microplate luminometer (Berthold technologies). For anoikis
assay, 5,000 cells were plated onto 96-well ultra-low binding plates (Corning) and
were incubated in serum-free HuMEC media (Life Technologies) containing 0.2%
methylcellulose. Thereafter, total cells were collected and mixed the cell suspension
at 1:1 with 0.2% trypan blue. Dead cells were stained by trypan blue and counted
using a hemocytometer.

HUVEC and matrigel adhesion assays. For HUVEC adhesion assay, HUVEC
cells were plated into 12-well gelatin coating plates and cultured in EGM-2 bullet
kit media (LONZA) for 2 days. When HUVEC cells reached a 499% confluent
monolayer, cancer cells were added into same plates. For matrigel adhesion assay,
12-well ultra-low binding plates (Corning) were coated with 4% growth factor
reduced matrigel (BD Biosciences) at 37 �C for 3 h, followed by plating cancer cells
onto matrigel-coated plates. After 30 min incubation at 37 �C, non-adherent cancer
cells were washed by PBS washing. Relative numbers of adherent cancer cell were
determined by using Luciferase assay system (Promega) according to the manu-
facturer’s instructions.

Invasion assays. 50,000 cancer cells were labelled with Cell Tracker Green
CMFDA dye (Invitrogen) for 30 min and starved with DMEM media containing
0.2% FBS for 16 h. These cells were then seeded onto matrigel-coated inserts and
incubated for 16 h. Inserts were washed with PBS and fixed with 4% paraf-
ormaldehyde. Cells that had invaded the lower surface of the membrane were
counted using fluorescent microscope.

Wound-healing assay. 231-LM2 cells were seeded in six-well plates and cultured
until 95% confluent. The adherent monolayer cells were scratched using 200 ml
pipette tip and the plate was washed 3 times with fresh DMEM media containing
10% FBS. The scratch wounds are marked with dots using labelling pen. The plates
were incubated with 5% CO2 at 37 �C for 16 h. Images of the scratch wounds were
captured using a phase-contrast microscope. Percentage of wound-healing was
calculated as the following formula: (original scratch width—scratch width after
healing) (original scratch width)� 1 � 100%.

RAW 264.7 cell migration assays. 231-LM2 cells were transfected with siRNAs
against CXCL1 and seeded in six-well plates. When cancer cells reached a 495%
confluent monolayer, the culture media were exchanged using DMEM media
containing 0.2% FBS. After 48 h, CM were placed into the lower chamber of plate.
3� 105 RAW 264.7 cells were labelled with Cell Tracker Green CMFDA dye and
place onto the FluoroBlok (Corning) transwell insert. After 9 h incubation at 37 �C,
migrated RAW 264.7 cells were fixed with 4% paraformaldehyde and counted. For
human cytokine treatment experiment, recombinant human CXCL1 was added to
CM before migration. Migrated cells were captured and counted using fluorescent
microscope.

Cytokine antibody array. To generate CM, 1� 106 MDA231-LM2 cells were
seeded on six-well plates. The next day culture media were replaced with DMEM
containing 0.2% FBS. After 48 h, CM was collected and used in cytokine antibody
array. The experiment was performed according to manufacturer’s instruction. The
complete array map (Array C5) can be found in http://www.raybiotech.com/
c-series-human-cytokine-array-5-2.html.

ELISA. Quantikine ELISA immunoassay (R&D systems) was used for quantifica-
tion of secreted CXCL1 in CM of 231-Par and LM2 cell line. The experiment
was performed according to manufacturer’s instruction.

Co-immunoprecipitation (Co-IP). Cells were treated with BMP4 or TGFb1 and
lysed in 1 ml of nuclear extraction Buffer A for 15 min at 4 �C. After centrifugation,
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the nuclear pellets were lysed in hypotonic Buffer B for overnight at 4 �C.
Equivalent amounts of nuclear proteins were diluted in immunoprecipitation
buffer containing 40 mM Tris-Cl pH 7.4, 120 mM NaCl, 1 mM EDTA, 5 mM NaF,
10 mM b-glycerophosphate, 1 mM Na3VO4 and protease inhibitor cocktail and
immunoprecipitated with 1 mg anti-SMAD4 (Santa Cruz Biotechnology, CA) for
16 h at 4 �C. After rocking, Protein G agarose beads (Sigma-Aldrich) were added
and incubated for 4 h at 4 �C. Immunoprecipitates were pelleted by centrifugation
at 200 g and washed three times with immunoprecipitation buffer. The bound
proteins were analysed by western blotting. Information on the antibodies used in
this assay are summarized in Supplementary Table 6.

Statistical analysis. Statistical significance was determined by one-tailed
Mann–Whitney test (animal experiments), log-rank test (MFS curves), or
two-tailed unpaired Student’s t-test (cell-based experiments) as indicated in the
Figure legends. P values of o0.05 were considered as statistically significant.
Data represent the mean±s.e.m. (error bars) unless indicated otherwise.

Data availability. RNA-seq data have been deposited in the gene expression
omnibus (GEO) database under access number GSE 72111. All relevant data are
available from the authors on request.
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