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Hotspots of aberrant enhancer activity punctuate
the colorectal cancer epigenome
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In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of

the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling

of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens.

Using normal colonic crypt epithelium as a comparator, we identify enhancers with

recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently

activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and

cohesin complex members, and originate from primed chromatin. Many activate known

oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome

editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated

enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent

epigenetic alterations at enhancers which activate a common, aberrant transcriptional

programme critical for CRC growth and survival.
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T
he development of cancer is closely associated with the
accumulation of not only oncogene and tumour suppressor
mutations, but also epigenetic changes that alter

chromatin structure and lead to dysregulated gene expression.
In mammalian cells, active gene enhancer elements are contained
within open chromatin marked with high levels of mono-
methylated lysine 4 and acetylated lysine 27 on histone H3
(H3K4me1 and H3K27ac)1,2. We previously demonstrated that
malignant transformation of colon is accompanied by widespread
locus-specific gains and losses of enhancer activity, which
we termed variant enhancer loci (VELs)3. Subsequent studies
have shown that colorectal cancer (CRC) and other forms of
cancer contain clusters of aberrantly active gene enhancers
called super enhancers that drive dysregulated expression of
oncogenes4–6. Additionally, both super enhancers and typical
enhancers are enriched for SNPs that confer genetic
predisposition to cancer3,4,7,8. Collectively, these studies suggest
that aberrant enhancer activity is a fundamental driver of tumour
formation and maintenance.

To date, a handful of different tumour types and cell lines have
been molecularly profiled at the level of the enhancer epigenome.
However, thorough characterizations of the enhancer epigenomes
of a single type of cancer, including CRC, have been limited9.
Additionally, because the cell type of origin for most cancers is
either unknown or difficult to obtain, few studies have
interrogated tumour enhancer landscapes in relation to an
appropriate normal comparator. Consequently, the degree of
aberrant enhancer activity in most forms of cancer remains
unknown. Likewise, it is unclear whether regions of altered
enhancer activity are heterogeneous across tumours of a given
type or if tumours contain recurrently altered enhancers that
are functionally analogous to well documented mutational
hotspots10. The lack of a normal comparator also precludes the
ability to interrogate the chromatin status of such potential
hotspots before malignant transformation. Additionally, while
there are strong correlations between cell type-specific enhancers
and tumour risk SNPs identified through GWAS, the extent of
these correlations for a given tumour type is difficult to determine
without a complete reference map. It is also essential to study the
epigenomes of both the normal cells and the tumour to determine
the cellular context(s) in which the cis-regulatory SNPs likely
function. Lastly, whether aberrant enhancers in cancer represent
drivers of tumorigenesis or are simply bystanders accrued during
malignant transformation remains to be investigated.

Here, we identified differential enhancer usage between normal
colonic crypts and more than 40 CRC specimens, representing
the most extensive delineation of enhancer alterations in a single
type of cancer to date. We found that thousands of enhancers
were activated or silenced more frequently across the CRC cell
lines than expected by chance. These recurrently altered
enhancers were associated with dysregulated expression of
predicted target genes. Experimental manipulation of aberrantly
gained enhancers, either by targeted genome editing or by
pharmacologic inhibition, counteracted the associated gene
overexpression, indicating a direct link between enhancer
alteration and oncogenic patterns of gene misexpression.
Recurrently gained enhancers frequently arise from sites of
poised chromatin in normal colon tissue, overlap the majority of
CRC risk loci identified by GWAS, and are commonly occupied
by a set of factors including AP-1 and cohesin complexes, which
may provide clues to the mechanisms underlying epigenetic
dysregulation at enhancers. Approximately half of the recurrent
gained VELs are present in early adenomas, suggesting that
the full enhancer signature may be required for progression to
full-blown CRC. We conclude that the formation of CRC is
accompanied by a signature pattern of epigenetic changes at

enhancer elements that contributes to tumour risk, progression,
growth and survival.

Results
Epigenomic profiling reveals enhancer changes in CRC. We
combined 36 new and six previously published datasets3, all
uniformly processed, to obtain a set of high-resolution H3K27ac
ChIP-seq profiles on seven freshly isolated purified specimens of
normal colonic epithelial crypts, 31 genetically diverse CRC cell
lines representing all clinical stages, and four primary colorectal
tumours directly resected from patients (Supplementary Table 1).
We also performed H3K4me1 ChIP-seq and DNaseI
Hypersensitivity (DHS) mapping on normal colonic crypts and
a subset of the CRC cell lines. We chose to use cell lines for our
discovery phase analyses and tumour tissue for validation based
on the knowledge that heterogeneity of tumour tissue samples
and varying degrees of stromal contamination can skew genomic
analyses, particularly those involving clustering, correlation and
differential analyses11. Each sample was input matched and
sequenced to a mean depth of 38.5 million uniquely aligned reads
(Supplementary Data 1). A representative browser view of the
H3K27ac ChIP-seq data is shown in Fig. 1a. We detected a mean
of 14,406 promoters across all colon samples, defined by
H3K27ac peaks (MACS Po1� 10� 9, see ‘Methods’) located
within 2 kb of transcription start sites (TSS) (Fig. 1b). The mean
number of H3K27ac peaks located distal to promoters
(42 kb from TSS) was 32,136. Similar results were obtained
when a more conservative distance of r1 kb from the nearest
TSS was used for promoters, with only 1–5% of peaks per sample
located between 1 and 2 kb of a TSS. Through overlaps of
H3K27ac peaks with H3K4me1 and DHS peaks from
representative samples, we determined that the majority of the
distal H3K27ac peaks bear signature features of active enhancer
elements. Specifically, on average 82% of H3K27ac peaks were
co-enriched for H3K4me1, and 55–64% were contained within
open chromatin.

To identify peaks differentially enriched for H3K27ac in each
CRC sample relative to the normal colonic crypts, we used
DESeq12 and a Benjamini–Hochberg corrected P value threshold
ofo0.05 (Fig. 1c). The DESeq approach minimizes potential false
positives due to discrepancies in sequence read depths. In keeping
with previous terminology, we term these regions VELs. Gained
VELs were defined as sites in which the H3K27ac mark was more
enriched in CRC than in the normal crypts. Lost VELs were
defined as sites more enriched for H3K27ac in crypts than in
CRC. Exemplar loci are shown in Fig. 1d. In all cases, the
percentage of gained and lost VELs within 2 kb of TSSs was far
fewer than those more distal to TSSs (67–84% at distal loci,
Mann–Whitney–Wilcoxon (MWW) Po1� 10� 10). VELs were
also enriched for distal, putative enhancer sites compared with
the overall distribution of H3K27ac peaks (w2, Po1� 10� 30),
suggesting distal regulatory elements may be particularly prone to
aberrant changes in cancer. Gained VELs showed concordant
increases in H3K4me1 levels and were often located in open
chromatin sensitive to DNaseI digestion (Fig. 1d, Supplementary
Fig. 1A,B). Lost VELs showed concordant decreases in H3K4me1
and were located in closed chromatin (Fig. 1d, Supplementary
Fig. 1A,C). We assigned VELs to their putative target genes using
PreSTIGE, an experimentally validated computational method
that predicts enhancer–gene interactions based on integrated
enhancer profiles and gene expression data13–15. Relative to
normal colon, genes associated with gained VELs showed elevated
expression in CRC, while lost VEL genes were broadly repressed,
and the magnitude of the change in expression positively
correlated with the number of VELs per gene (Fig. 1e).
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Figure 1 | Epigenetic alterations at enhancers distinguish CRC from normal colon. (a) Normalized H3K27ac ChIP-seq tracks of all CRC cell line, colon

crypt, and tumour samples at a representative locus (hg19, chr1:201,960,000–202,129,000). Super-tracks (red) correspond to median binned signal of all

normal crypts or all CRC cell lines. Each track is labelled with the sample type and name. (b) Average number of H3K27ac ChIP-seq peaks that overlap

promoters (r2 kb from TSS; grey) and putative enhancers (42 kb from TSS; white). Dots represent counts in each of the 31 CRC cell lines and four normal

colon samples, bars represent mean±s.d. (c) Relative enrichment of H3K27ac ChIP-seq signal in a representative CRC cell line (V410) compared with

normal colon crypts. Peaks differentially enriched between normal and CRC (Benjamini–Hochberg corrected Po0.05) are shown in red and blue.

(d) H3K27ac and H3K4me1 ChIP-seq and DHS tracks at exemplar gained (left) and lost (right) VELs in a representative CRC cell line (V410; blue)

compared with a normal colon sample (black). (e) Fold change of expression of all genes associated with gained (red) and lost (blue) VELs, and genes not

associated with VELs (nonVEL; grey). **MWW Po1� 10�99 versus non-VEL genes. Box boundaries represent 1st and 3rd quartiles, middle line represents

median, and whiskers extend to the nearer of the data extremes or 1.5 times the IQR. (f) Percentage of lost (blue), gained (red), and unchanged (grey)

enhancers detected in each CRC cell line. (g) Unsupervised clustering of all pairwise correlations of enhancer RPKMs for CRC cell lines and normal colon

samples. Colour bars (middle) indicate clinical and molecular characteristics of each sample. Green boxes indicate samples that are more (solid line) and

less (dashed line) similar to one another and to crypts. A,ad, adenoma; B–D, Dukes stage B–D; M,met, metastasis; N,NL, normal; U, unknown; P, primary

tumour; AA, African American; C, Caucasian; M, male; F, female; R, right; L, left; MSI, microsatellite instable; MSS, microsatellite stable.
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We determined that our cohort of 31 CRC samples captured 89%
of all possible lost VELs and 80% of all possible gained VELs in
CRC, indicating that our VEL detection approached ‘saturation’
(Supplementary Fig. 1D). We predicted that each additional cell
line sequenced after 31 samples would add o1% to the total
number of unique VELs identified. The percentage of VELs in
each CRC cell line relative to all enhancers (gained, lost, and
unchanged) varied widely among CRC samples, from 39 to 88%
(Fig. 1f). Unsupervised clustering showed that the enhancer
epigenomes of the normal crypts were highly distinct from those
of CRC. CRC cell lines formed two clusters. Members of one
cluster were considerably more closely correlated to one another
(median Spearman’s correlation r 0.73) and to the normal crypts
(median r 0.65) than members of the other cluster (median
r 0.61 and 0.54, respectively) (Fig. 1g, compare green boxes).
The more correlated, ‘crypt-like’ cluster was more enriched
for early stage CRCs than the less crypt-like cluster (Z test for
two-proportions Po0.05). The less crypt-like cluster was also
male biased (Z test Po0.05). The clusters failed to correlate with
microsatellite instability status, tumour side, patient ethnicity,
or age at diagnosis. We conclude that colon cancer progression
is accompanied by extensive remodelling of the enhancer
epigenome, with early stage tumours generally preserving a
considerable portion of the normal enhancer epigenome and
appearing more ‘crypt-like’ than late stage tumours that have
undergone a more dramatic shift.

Highly recurrent VELs dysregulate key cancer genes. Upon
visual inspection of ChIP-seq profiles, we noticed ‘hotspots’, that
is, genomic intervals harbouring VELs shared by the vast majority
or all of the CRC samples, suggesting they were positively selected
during malignant transformation of the colon. An example is
shown in Fig. 2a, where multiple gained VELs at the FOXQ1 locus
are evident in nearly all CRC samples. To systematically assess
VEL recurrence, we used permutation analyses to identify VELs
common among a greater proportion of CRC samples than
expected by random chance at various stringent false discovery
rates (Fig. 2b). Enhancers gained in 10 or more CRC lines
(G10þ ) or lost in 14 or more CRC lines (L14þ ) were
significantly recurrent (permutation Po0.001, FDRo0.05;
Supplementary Data 2 and 3). We detected 75 gained VELs and
67 lost VELs common to all 31 CRC cell lines (FDRo0.0001).
More than 90% of the most highly recurrent VELs (present in 30
or all 31 of the CRC lines) validated in primary tumours and are
therefore unlikely to be cell culture artifacts (Fig. 2c). Expression
of genes associated with recurrent gained VELs was elevated
across primary CRCs relative to normal, while lost VEL gene
expression was repressed (Fig. 2d, MWW Po1� 10� 43).
Moreover, dysregulated genes associated with recurrent
VELs were more likely to validate as dysregulated in patient
tumours than misexpressed genes not associated with VELs
(w2, Po1� 10� 10). Additionally, genes associated with the most
recurrent VELs were more dysregulated than genes associated
with less recurrent VELs (MWW Po1� 10� 31; Supplementary
Fig. 2A). To directly characterize the regulatory effects of VELs,
we performed CRISPR/Cas9-mediated disruption of three
recurrently gained enhancers predicted to upregulate PHLDA1 in
HCT116 cells (Fig. 2e). Compared with the unedited parental cell
line, PHLDA1 levels were reduced by more than 60% in each of
the three the cell lines containing the edited enhancers (Fig. 2f).
As a negative control, we also used CRISPR/Cas9 to disrupt four
sites at the MYC locus that had relatively weak signal in HCT116
cells, but were identified as robustly gained VELs in other CRC
cell lines (Supplementary Fig. 2B). The disruption of these four
sites did not significantly impact MYC levels (Supplementary

Fig. 2C). Together these results suggest that VELs have a sig-
nificant regulatory effect on the predicted target genes.

Network analysis of gene ontology terms enriched among
recurrent gained VEL genes revealed commonalities including
embryogenesis, angiogenesis, hormone secretion, DNA replica-
tion, small molecule transport and drug metabolism (Fig. 2g).
Gene ontology terms enriched among lost VEL genes included
small RNA regulation, ion homoeostasis, ion transport, drug
metabolism and cell transporter activity. Genes associated with
the most common VELs included novel genes and several known
oncogenes and tumour suppressors implicated in CRC as well as
other forms of cancer, including MYC10,16, BMP4 (refs 17,18),
PHLDA1 (refs 19–22), SOX9 (refs 23–25) and TRIB3 (refs 26,27).
Several of the recurrent VEL genes have been shown through
functional studies to enhance tumorgenicity in CRC. For
example, overexpression of FOXQ1 has been shown to increase
CRC tumour growth in mice28. Reduced expression of recurrent
lost VEL genes, E2F2 and SIRT6, is associated with increased
tumour growth in CRC28–31. Overall, these findings are
consistent with and extend our previous studies3 indicating that
the CRC epigenome is defined by a signature set of highly
recurrent epigenetic alterations at enhancer elements, or
‘hotspots’. The highly significant recurrence of these enhancer
aberrations suggest that these loci may be under positive selection
for acquisition of enhancer function. This is further evidenced by
the association of these hotspots with a common aberrant
transcriptional programme defined by a broad range of cellular
processes that are frequent hallmarks of colorectal and other
types of cancer.

AP-1 and cohesin factors enriched at recurrent gained VELs.
Recurrent gained VELs often contained exceptionally high levels
of H3K27ac and formed clusters of individual enhancers,
reminiscent of super-enhancers. These observations prompted us
to systematically investigate the relationship between VELs and
super-enhancers. To define super-enhancers in each sample,
we implemented the ROSE script on H3K27ac ChIP-seq signals
(Supplementary Fig. 3A), and then determined the fraction of
gained and lost VELs that were constituents of super-enhancers
as a function of VEL recurrence rate. Twenty-four to 44% of lost
VELs were constituents of super-enhancers in normal colon
crypt, and this percentage did not scale with the lost VEL
recurrence rate (Supplementary Fig. 3B). In marked contrast, the
proportion of gained VELs that were super-enhancer constituents
progressively increased with VEL recurrence. Of the most
highly recurrent gained VELs, 96% were constituents of super-
enhancers, compared with o20% of gained VELs unique to a
single CRC line.

We next set out to identify transcription factors and other
proteins that occupy the recurrent gained VELs and potentially
activate expression of the associated genes. We began by
identifying transcription factor motifs enriched in recurrent
gained VELs compared with unique gained VELs. Remarkably,
five of the top six most enriched factors were members of the
AP-1 complex (HOMER Po1� 10� 300; Supplementary Data 4).
AP-1 factors mediate cell state transitions during development
and in response to myriad environmental cues32 that are often
exploited by cancer cells for growth and survival. We next
integrated the CRC VEL profiles with publicly available ChIP-seq
data of more than 400 proteins in CRC cells33, looking for factors
that showed the greatest increase of enrichment with VEL
recurrence (Supplementary Fig. 4). Consistent with the motif
search, AP-1 factors ranked among the top, including JUND and
JUN in the top 2%, and ATF2 in the top 6%. Three core
components of the cohesin complex, RAD21, SMC1A and SMC3,
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left) and lost (L14þ , right) VELs. Circles represent gene ontology categories with size proportional to number of genes and coloured based on enrichment

FDR. Green lines connect categories with overlapping gene sets with the line weight proportional to the degree of overlap.
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as well as the cohesin loading factor, NIPBL, were also among the
top ranking factors (rank496th percentile). The cohesin complex
facilitates physical interactions among individual constituents of
super-enhancers and their target genes34,35. Factors ranking
highly in this analysis also included several that were themselves
targets of highly recurrent VELs, such as MYC, ETS2 and CDX2
(rankB99th, 97th and 94th percentile, respectively), indicative of
autoregulatory loops driving expression of these factors, as has
been previously demonstrated for super enhancer-associated
genes9,36.

Recurrent gained VELs are hotspots for CRC GWAS risk loci.
We next sought genetic evidence that recurrent VELs are relevant
to CRC by intersecting various categories of VELs and enhancers
with 75 loci associated with genetic predisposition to CRC
through GWAS (Supplementary Data 5)37. Consistent with
previous results, the majority of risk loci (76.0%; risk SNP and
SNPs in tight linkage disequilibrium, see ‘Methods’) reside in a
putative H3K27ac enhancer in crypts or CRC3,7. Surprisingly,
two-thirds of these (48% of all CRC risk loci) mapped to
recurrent gained VELs, most of which were highly recurrent, that
is, common to 19 or more CRC samples (Fig. 3a). Through
variant set enrichment (VSE) analyses3,38 we confirmed that CRC
risk locus variants were most enriched in highly recurrent gained
VELs, and that this enrichment was specific for recurrent gained
VELs and not recurrent lost VELs or other genomic features such
as 50UTRs, exons or introns (Fig. 3b). Promoter enrichment was
borderline significant, but not to the degree of recurrent or highly
recurrent gained VELs. We highlight an exemplar locus
containing two independent disease association signals that lie
in recurrent gained VELs downstream of DUSP10 (Fig. 3c). The
full list of risk loci that overlapped recurrent gained VELs and
their putative target genes is shown in Fig. 3d. We also
determined that the proportion of VELs containing CRC risk
SNPs scaled with the recurrence of the VELs, such that highly
recurrent VELs common to 19 or more CRC lines were 7.8-fold
more likely to overlap a risk locus than VELs unique to a single
CRC line (Fig. 3e, Supplementary Fig. 5). The genomic
convergence between recurrent VELs and CRC risk loci
provides genetic evidence that the recurrent gained VELs are
relevant in colorectal tumorigenesis. Furthermore, the results
imply that a considerable fraction of the CRC GWAS signals are
cis-regulatory variants active only in the tumour, as has been
previously proposed7,39. This is consistent with either of two
possibilities: that the CRC risk SNPs promote aberrant gain of
enhancer function, or that the SNPs alter the activity of the
enhancer following its acquisition in cancer.

A subset of recurrent gained VELs present in colon adenomas.
We next set out to determine if the recurrent gained VELs arise
before or after malignant transformation. We isolated two early
adenomas from a patient clinically diagnosed with familial
adenomatous polyposis and performed H3K27ac ChIP-seq
studies. We then identified VELs in the adenomas and compared
them to the set of recurrent gained VELs. Of the gained VELs
recurrent in 19 or more CRC cell lines (G19þ ), 38% were also
identified as VELs in at least one adenoma (Fig. 4a). Of VELs
identified in 30 or more CRC cell lines, 70% were detected in the
adenoma samples. We next compared the H3K27ac ChIP-seq
signal strength of the most highly recurrent gained VELs (G30þ )
in the CRC cell lines versus the adenoma samples. This analysis
revealed a population of VELs with relatively equal signal
strength in both the adenomas and the CRC samples (Fig. 4b),
and a population where the relative VEL signal was at least two-
fold higher in the CRC samples versus the adenomas (Fig. 4b,c,

left). Genes associated with the more CRC-specific VELs included
several well known oncogenes in CRC, including MYC and
TCF7L2 (Supplementary Data 6). Genes associated with the
recurrent gained VELs shared between CRC and the adenomas
included FOXQ1 and RASGRF1 (Fig. 4c, right). The results
suggest that during the stepwise progression of CRC, the crypt to
early adenoma transition is accompanied by acquisition of a
subset of the recurrent gained VEL signature, and that the
remaining signature VELs likely arise later, during the adenoma
to carcinoma transition.

Recurrent VELs originate in primed and poised chromatin.
Cell state transitions during embryonic development are
mediated by dynamic and coordinated changes in enhancer
activity that ensure proper spatiotemporal gene expression40,41.
These changes involve commissioning and decommissioning of
enhancers, as well as dynamic switching of primed (H3K4me1)
and poised (H3K4me1 and H3K27me3) chromatin to the active
state (H3K4me1 and H3K27ac). Dynamic switching between
primed and active chromatin states also occurs in terminally
differentiated cells in response to both intrinsic and extrinsic
stimuli42,43. Based on the notion that malignant transformation
fundamentally represents a major transition in cell state, and
that tumour expression programs are often responsive to
microenvironmental cues, we investigated the chromatin status
of gained VELs before malignant transformation, through
analysis of H3K4me1 and H3K27me3 ChIP-seq data from the
normal colon crypts. Of non-recurrent gained VELs (VELs
unique to one CRC line), 20% contained significant levels of
H3K4me1 in the normal crypts and were considered primed
(Fig. 5a). Less than 2% contained both H3K4me1 and H3K27me3
and were considered poised. The majority gained both H3K4me1
and H3K27ac marks and appear to be newly commissioned in
CRC, lacking both H3K4me1 and H3K27ac in the normal and
gaining both of these marks in CRC. Strikingly, far fewer of the
recurrent VELs were determined to be newly commissioned
enhancers in CRC, with 64–67% defined as primed in normal and
13–24% as poised in normal (w2, Po0.0005) (Fig. 5a). Exemplar
VELs that switched to active in CRC from the poised state in
normal colon are shown (Fig. 5b). The findings indicate that most
of the recurrent VELs were not newly commissioned, but rather
that they existed within the normal crypts. This suggests a
reawakening of developmental or environmentally responsive
enhancers is one mechanism for recurrent gain of enhancer
activity in CRC.

Recurrent gained VEL genes may represent CRC dependencies.
While some of these VELs or their associated genes, could be
‘markers’ of CRC and not themselves drivers of tumorigenesis,
based on the preceding results we hypothesized that a subset have
a direct role in establishing or maintaining the CRC phenotype.
Many of the recurrent gained VELs were super-enhancers
acquired in CRC. A handful of super enhancer-associated genes,
including MYC and OCA-B, have been shown to be ‘dependency’
genes in multiple myeloma, and these genes are often selectively
downregulated in response to BET inhibition5,6,44,45. This led us
to hypothesize that genes associated with highly recurrent gained
VELs may indeed be CRC ‘dependency’ genes that are similarly
amenable to downregulation in response to pharmacologic
BET inhibition. We therefore used the BRD4 inhibitor, JQ1
(refs 44,46), as a tool to assess the functional role of the gene set
demarcated by recurrent gained VELs. We tested 20 CRC cell
lines in culture, which were all relatively sensitive to JQ1, showing
a broad range of IC50s ranging from 100 to 3,800 nM (Fig. 6a,b).
These IC50s are below the range reported for JQ1-resistant
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cancers of various origins47–49. Dose–response curves for one of
the most and least responsive CRC cell lines are shown in Fig. 6a.
Flow cytometry analyses indicated that CRC cells treated with
JQ1 underwent both cell cycle arrest and apoptosis
(Supplementary Fig. 6), consistent with responses observed in
other cancers45,46. We next tested JQ1 efficacy in mouse
xenograft models of three CRC cell lines that showed variable
responses in vitro. JQ1 had similar effects in all three xenograft
models, significantly slowing tumour growth (Fig. 6c,
Supplementary Fig. 7A). It is unsurprising that the xenografts

responded similarly to JQ1, given that the previously reported
serum concentrations for the dosing regimen used far exceed the
IC50s calculated in vitro44. To evaluate whether the growth-
inhibiting effects of JQ1 were associated with a specific
transcriptional response, we performed transcriptomic analysis
before and after treatment with JQ1. We tested two highly
sensitive, two moderately sensitive, and two less sensitive CRC
cell lines at four time points after JQ1 treatment (0.5, 1, 6, 24 h) as
well as untreated controls. We then analysed the transcriptional
response of genes associated with gained VELs and recurrent

N
or

m
al

C
R

C
 c

el
l l

in
es

 T
um

ou
r

DUSP10
rs6691170 rs6687758

LD
 st

ru
ctu

re

N: Crypt1
N: Crypt2
N: Crypt3
N: Crypt5
N: Crypt29
N: Crypt28
N: Crypt37
A: V411
B: V1009
B: SW480
B: V1024
B: V1051
B: V1058
B: V1074
B: V206
B: V1106
B: V429
B: V703
B: V968
B: V432
B: V456
B: V481

C: V389
D: V852
D: Colo205

M: V866
M: V576
M: V784
M: V503
M: V457
M: V410
M: V855
M: V400
U: HCT116
Prim. Tmr: 17A
Normal super-track
CRC super-track

C: V5

D: V9P
M: V9M

B: V940

SNPs

a c

b

e

Recurrent
gained VELs

48%

Mix of recurrent
gained and lost VELs

3%

Recurrent
lost VELs

3% 

VELs (non-
recurrent)

21%

Enhancers
(non-VEL)

1%
Other
24%

d

BM
P4

PIT
X1

LA
M

C1

CD9,
 P

LE
KHG6,

 T
NFRSF1A

LA
M

C1

DUSP10

M
YC

GPATCH1

BM
P2

M
ED13

L

FADS1,
 F

EN1

TBX3

TGFB1,
 E

XOSC5

DUSP10

CDH1,
 C

DH3

GATA3

SLC
22

A3

CDKN1A

ATF1,
 D

IP
2B

ARHFAP11
A, G

REM
1

LR
RC34

, T
ERC

RHPN2

GATA3

SM
AD7

BIC
C1

SM
AD7

CYCS

EIF
3H

NXN

PTPN23

0

5

10

15

20

25

30

35

rs
44

44
23

5
rs

24
27

30
8

rs
49

25
38

6
rs

64
71

61
rs

10
75

28
81

rs
10

84
94

32
rs

10
91

12
51

rs
66

91
17

0
rs

10
50

54
77

rs
69

83
26

7
rs

70
14

34
6

rs
10

41
12

10
rs

48
13

80
2

rs
73

15
43

8
rs

15
35

rs
17

45
37

rs
17

45
50

rs
42

46
21

5
rs

59
33

6
rs

18
00

46
9

rs
22

41
71

4
rs

66
87

75
8

rs
99

29
21

8
rs

10
79

56
68

rs
77

58
22

9
rs

13
21

31
1

rs
11

16
95

52
rs

47
79

58
4

rs
10

93
65

99
rs

13
34

39
54

rs
41

43
09

4
rs

49
39

82
7

rs
49

48
31

7
rs

72
29

63
9

rs
39

45
3

rs
64

69
65

6
rs

12
60

35
26

rs
81

80
04

0

M
ax

im
um

 g
ai

ne
d 

V
E

L 
 r

ec
ur

re
nc

e

CRC risk SNP 

LA
M

A5

Gained VELs
Lost VELs

**
%

 V
E

LS
 w

ith
 S

N
P

0.5

1.0

0.0
G1 L1 G30+ L30+G10+ L14+

Recurrent

G19+ L23+

Highly
recurrent

VEL recurrence

G1-9 L1-13

Non-
recurrent

N.S.

Highly recurrent lost VELs (L23+)
Recurrent lost VELs (L14+)

3’ UTRs
Unique gained VELs

Whole genes
Introns

5’ UTRs
Non-recurrent gained VELs (G1-9)

Exons
Promoters

Recurrent gained VELs (G10+)
Highly recurrent gained VELs (G19+)

−2 0 2 4
Relative enrichment score

Figure 3 | CRC risk SNPs lie in highly recurrent VELs. (a) Co-localization of CRC risk SNPs and recurrent gained and lost VELs, non-recurrent VELs, and

non-VEL enhancers. (b) Variant set enrichment (VSE) analysis showing the degree of enrichment of CRC risk SNPs (diamonds) in various genomic features

relative to random SNP sets (boxplots). Red line indicates significance threshold (Bonferroni corrected Po0.05). (c) Normalized H3K27ac ChIP-seq tracks

in normal crypt and CRC at the DUSP10 locus. SNPs are represented by vertical black lines, at middle, and linked to haplotype block structure, shown below.

Red lines denote the genomic locations of recurrent gained VELs which colocalize with two distinct CRC risk loci containing the lead GWAS risk SNPs

rs6691170 and rs6687758 (orange arrowheads). Each track is labelled with the sample type and name of CRC cell line, crypt, or primary tumor sample. N,

normal; A, adenoma; B–D, Duke’s stage B–D; M, metastasis; U, unknown. Super-tracks in red correspond to median binned signal of all normal crypts or all

CRC cell lines. (d) Maximum gained VEL recurrence at each recurrent gained VEL CRC risk locus. The lead SNP at each risk locus is shown on the x axis.

Putative target genes are shown at the top of each bar. (e) Percentage of gained (red) and lost (blue) VELs that contain a risk SNP (lead or LD). G10þ ,

G19þ and G30þ correspond to gained VELs recurrent in at least 10, 19 and 30 lines, respectively. L14þ , L23þ , L30þ correspond to lost VELs recurrent

in at least 14, 23 or 30 lines, respectively. **w2 Po1� 10� 5.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14400 ARTICLE

NATURE COMMUNICATIONS | 8:14400 |DOI: 10.1038/ncomms14400 |www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


gained VELs relative to all expressed genes as controls. Given that
genes associated with multiple gained VELs were particularly
upregulated in CRC relative to normal (Fig. 1e), we also
quantified the expression of these ‘clustered VEL’ genes
following JQ1 treatment. At the six-hour time point, gained
VEL genes were significantly reduced in expression in all but the
two least sensitive CRC cell lines (Fig. 6d, Supplementary Fig. 7B).
Recurrent gained VELs showed an even greater degree
of downregulation, with genes associated with multiple
recurrent gained VELs showing the most dramatic response.

Thus, recurrent gained VELs mark a set of genes that are
specifically downregulated following JQ1 treatment. The response
of the recurrent VEL genes was markedly attenuated in two less
sensitive CRC lines compared with the two most sensitive CRC
lines (Fig. 6d, Supplementary Fig. 7B). We next analysed whether
the difference in the response was related to the specific genes
targeted by recurrent VELs in the most and least sensitive lines, or
the degree of responsiveness of the same gene targets. We found
that 89–94% of the highly recurrent gained VEL genes were
shared between the two most and two least sensitive CRC lines,
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however the response of these shared genes was far greater in the
two sensitive lines (Po0.05). We conclude that the phenotype of
growth inhibition by JQ1 is associated with recurrent VEL gene
response, and not necessarily differences in the targeted gene sets
between sensitivity groups.

Lastly, we tested whether individual genes associated with
recurrent gained VELs might represent cancer dependencies. We
took advantage of publicly available data from a recent study
identifying ‘fitness genes’ in the CRC cell line HCT116 through
CRISPR–Cas mediated knockout of 17,661 protein-coding
genes50. Using gene set enrichment analysis (GSEA), we found
a robust correlation between highly ranked fitness genes and

genes associated with the recurrent gained VELs (Fig. 6e),
indicating that HCT116 cells rely on sustained expression of
several of the recurrent gained VEL genes. Together with the BET
inhibitor studies, these results indicate that CRC tumours are
dependent on recurrent VEL genes both globally and on an
individual gene basis.

Discussion
The classic genetic model of CRC tumorigenesis, or the
‘Vogelgram’, states that mutation of APC initiates the conversion
of normal colon epithelium to the early adenoma stage51.
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The progression from adenoma to frank carcinoma is
accompanied by additional mutations in other genes including
KRAS, SMAD4, PIK3CA and TP53 (ref. 52). This model is well
supported by exome sequencing studies showing that these genes
lie in mutational hotspots and myriad functional studies support
their role in malignancy. The results presented here indicate that
recurrent oncogenic events are not limited to the CRC genome,
but that there are also hotspots of frequent epigenetic
dysregulation at enhancer elements. We found thousands of
VELs that were more recurrent than expected for passenger-like
events, suggesting they were under strong positive selection
during the process of tumorigenesis. Additionally, similar to
recurrent DNA mutations, the recurrently altered enhancer
elements deregulate potential tumour suppressors and
oncogenes. Interestingly, the number of recurrent enhancer
alterations dwarfs that of recurrent mutational events by as
much as 10-fold. Collectively, these findings indicate that
epigenomic enhancer dysregulation occurs in parallel to the
well described DNA mutations that occur at canonical
proto-oncogenes and tumour suppressors during malignant
transformation of colon crypt cells into CRC.

We provide several lines of evidence that many of the
recurrently acquired enhancer changes in CRC are functional
and relevant to the CRC phenotype. First, through integration
with transcriptome data from both CRC cell lines and primary
tumours, we find that the recurrently acquired enhancers activate
genes that are commonly elevated in CRC, suggesting VEL
acquisition is a major mechanism by which tumour cells alter
expression to gain a growth or survival advantage. Several of these
genes are known oncogenes previously implicated in CRC by
TCGA and others. This includes MYC, the primary effector of
Wnt-b catenin pathway activity in CRC16 and a central ‘node’
connecting dysregulation of Wnt-b catenin and other signalling
pathways to downstream patterns of misexpression10. Others
genes associated with recurrent VELs are novel, and by
association may also be important in CRC pathogenesis.
Second, we demonstrate a strong convergence between the
recurrently acquired enhancers and genetic loci associated with
risk to CRC through GWAS, with recurrent gained VELs far
more likely to harbour a GWAS risk SNP than non-recurrent
VELs. Third, we demonstrate that the growth of CRC cells can be
mitigated by targeted knockout of individual genes activated by
the recurrent VELs, or with a BET inhibitor that selectively and
potently suppresses genes associated with the recurrently
acquired VELs. Collectively, these findings indicate that the
recurrently acquired enhancers drive a specific transcriptional
programme that both specifies and maintains the CRC
phenotype.

What drives formation of the recurrent VELs and why these
specific enhancers are recurrently activated remain outstanding
questions. One possibility is that VELs are formed through
somatic mutations that introduce transcription factor binding
sites, similar to somatic mutations that result in recruitment of
MYB to the TAL1 enhancer previously described in T-cell acute
lymphoblastic leukaemia53. Copy number alterations are another
possibility54, although it is worth noting that ChIP-seq peaks in
our study were input-normalized, and therefore enhancer signals
derived from copy number alterations are most likely excluded
from our analyses. Moreover, given that the frequency of
recurrent VELs exceeds that of all but the most common
mutations in CRC, DNA variation alone cannot fully account for
all recurrent VELs. Integration of somatic mutations derived from
whole genome sequencing of matched tumour/normal pairs with
the enhancer landscapes presented here could help reveal any
potential interplay between the CRC genome and enhancer
epigenome. Indeed, functional data annotating the non-coding

genome, such as that presented in this study, will be critical for
the interpretation of WGS data in CRC and other types of cancer.
An alternative hypothesis is that recurrent VELs form
downstream of primary mutational events which deregulate a
common signalling mechanism, such as Wnt/b-catenin.
However, we found that only a subset of the recurrent VELs
are present at the adenoma stage, suggesting that additional
events beyond deregulated Wnt/b-catenin signalling are required
for establishment of the full VEL signature and transition to the
carcinoma stage. Future studies designed to profile the enhancer
epigenome in colon cells immediately following complete loss of
the APC gene and after each of the subsequent mutational events
that accompany the stepwise formation of CRC could help shed
light on these possible mechanisms.

Lastly, while there is a growing body of evidence implicating
super-enhancer function in malignancy, the concept that super
enhancers represent a distinct class of enhancers which constitute
a new regulatory paradigm distinct from typical enhancers
remains controversial55. The gained and lost VELs presented here
were identified by an unbiased survey of the CRC enhancer
epigenome and evaluated using metrics that were, by design,
analogous to accepted methods for identifying likely driver DNA
mutations, such as recurrence, association with known cancer
genes and oncogenic pathways, and impact on gene expression.
Regions containing clusters of enhancers repeatedly emerged,
throughout our analyses. Recurrent gained VELs often occurred
in clusters and in fact, the most recurrent gained VELs were
almost universally constituents of super-enhancers. The enhancer
landscape around known oncogenes was often densely populated
with gained VELs, such as shown at the FOXQ1 locus (Fig. 2a).
Additionally, genes associated with multiple gained VELs were
not only more upregulated in CRC than genes associated with a
single VEL, they were also more responsive to inhibition by JQ1.
Thus, even though our method of identifying VELs made no
prior assumptions about genomic distribution, our findings
converge with several others4,54,56–58 to suggest that clusters of
recurrent enhancer activation have disproportionately strong
effects on oncogenesis.

Methods
Cell culture and tissue samples. VACO cell lines were previously derived from
colorectal tumour specimens and cultured as described59. Briefly, VACO cell line
V9M was grown in MEM media (Gibco, cat. 10370-021) supplemented with 8%
fetal bovine serum (Hyclone, cat. SH30071.03), 2mm L-glutamine (Gibco, cat.
25030-081), and 50mgml� 1 gentamycin (Gibco, cat. 15750-060). HCT-116 and
VACO cell lines V5, V8 and V9P were grown in MEM media supplemented with
8% heat-inactivated Cosmic calf serum (Hyclone, cat. SH30087.03), 2mm
L-glutamine, and 50mgml� 1 gentamycin. All other VACO cell lines were grown in
MEM media supplemented with 2% fetal bovine serum, 2mM L-glutamine,
1 mgml� 1 bovine insulin, 0.55 mgml� 1 human transferrin, 0.05 nM sodium
selenite (ITS; Fisher, cat. MT-25-800-CR), 50 mgml� 1 gentamycin, and 1 mgml� 1

hydrocortisone (MEM-2þ ). SW480 was also grown in MEM-2þ media.
COLO205 was cultured in RPMI-1640 (Gibco, cat. 11875-093) supplemented with
10% fetal bovine serum, 2mM L-glutamine and 1% penicillin/streptomycin (Gibco,
cat. 15140-122). Crypt epithelial cells were isolated from normal colon surgical
specimens by EDTA and mechanical dissociation, as previously described3.
Primary CRC tumours (n¼ 4) were grossly dissected from colon freshly resected
from four different individuals. Two adenomas, each 2–4mm diameter, were
grossly dissected from colon freshly resected from a patient with familial
adenomatous polyposis. All human tissue samples were obtained in accordance
with protocols approved by the Institutional Review Boards of the Case Western
Reserve University Human Research Protection Program. Patient informed
consent was provided for use of human tissue sample in research.

ChIP-seq and DNase-seq. DNase-seq was performed as previously described60.
ChIPs were performed from 5 to 10 million cross-linked cells and sequencing
libraries were prepared as previously described61. ChIP from frozen tumours and
adenomas was prepared as previously described62. ChIPs were performed using
8 mg of the following antibodies: rabbit anti-H3K4me1 (Abcam #8895), rabbit
anti-H3K27ac (Abcam #4729) and H3K27me3 (Abcam #6002). ChIP-seq libraries
were sequenced on an Illumina HiSeq 2000 or 2500 platform at the Case Western
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Reserve University Genomics Core Facility. The FASTX-Toolkit v0.0.13
(http://hannonlab.cshl.edu/fastx_toolkit/) was used to remove adapter sequences
and trim read ends using a quality score cutoff of 20. ChIP-seq data were aligned to
the hg19 genome assembly (retrieved from http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/chromosomes/), using Bowtie 2 v2.0.6 (ref. 63), discarding reads
with at least one mismatch and reporting the best alignment, if multiple alignments
were present. PCR duplicates were removed using SAMtools64. Peaks were detected
with MACS v1.4 (ref. 65), using an aligned input DNA sample as control with a
threshold for significant enrichment of Po1� 10� 9. Peaks lists were filtered to
remove all peaks overlapping ENCODE blacklisted regions (https://sites.google.
com/site/anshulkundaje/projects/blacklists). Wiggle tracks stepped at 25 bp were
generated by MACS, normalized by the mean genome-wide wiggle track signal in
each dataset and visualized on the Integrative Genomics Viewer66.

Identification of variant enhancer loci. For each CRC sample, we combined the
H3K27ac peaks called in that sample with peaks from four normal colon crypt
epithelium samples (C28, C29, C37, Crypt5) and merged overlapping peaks using
BEDTools67. The R package DESeq12 was used to identify peaks from the merged
list with differential enrichment of H3K27ac in the CRC sample relative to four
crypt samples at multi-test corrected (Benjamini–Hochberg) Po0.05. Master lists
of all unique gained or lost VELs found across the CRC cell lines were created by
combining the DESeq-based VEL calls for each CRC line and merging all
overlapping loci.

Quantification of VEL recurrence. Recurrence was assessed from the master VEL
lists, with a VEL considered present in a given cell line if at least one VEL call for
that CRC sample overlapped the collapsed VEL coordinates. We tabulated these
results with a 1 or 0 for presence or absence, respectively, producing a matrix of
dimensions (number of CRC cell lines)� (number of master VELs). The matrices
for gained and lost VELs are provided as Supplementary Data 2 and 3, respectively.
We used permutation analysis of these matrices to determine the expected, random
distribution of recurrence values and calculate the P value and FDR for each level
of recurrence (1–31 out of 31 CRC lines).

Super-enhancers were called using the ROSE package36. To determine
poised/primed status underlying gained VELs, coordinates of gained VELs from
the master list were intersected with H3K4me1 and H3K27me3 MACS-called peaks
in normal colon crypt and the number of VELs overlapping each mark counted.

Saturation analysis. Saturation analyses were performed separately for gained and
lost VELs. First, subsets of the 31 CRC cell lines in our panel were drawn at
random; 5000 randomizations were performed for each n except for subset sizes
with o5,000 possible combinations (n¼ 1–3 and 28–30 CRC lines), in which case
all combinations were tested. For each random subset, DESeq VEL calls for the
subsetted CRC lines were combined, overlapping loci were collapsed, and the total
number of unique VEL calls was counted. Saturation curves were fit to this
data using Prism (Version 5.0a) to calculate the theoretical maximum number of
gained VELs—152,588 (95% confidence interval 152,196–152,979)—and lost
VELs—47,460 (95% c.i. 47,384–47,535). Thus, the 121,806 gained VELs identified
in our panel represent B80% of all possible gained VELs (95% c.i. 79.6–80.0%),
and the 42,174 lost VELs called in our panel represent B89% of all possible lost
VELs (95% c.i. 88.7–89.0%).

Transcriptome studies. Transcript levels were quantified using Affymetrix
Human Exon 1.0 ST exon arrays, as previously described3, for five normal colon
crypt samples and 22 of the 31 CRC cell lines, as well as tissue specimens from
sixteen normal colon samples and 120 primary and metastatic colorectal tumours.

Prediction of VEL target genes. Interactions between genes and enhancers were
predicted using the PreSTIGE algorithm13–15 which identifies distance-restricted
enhancer–gene pairs for which both H3K4me1 enrichment and transcription levels
are specific to the tissue of interest. High-stringency PreSTIGE predictions were
generated for all CRC lines for which both H3K4me1 ChIP-seq profiling and
microarray expression data were available. PreSTIGE predictions for crypt
specimens were generated using median expression from the five crypt samples
included in the microarray data. All normal crypt and CRC predictions were then
concatenated to create a master file of all colon-specific enhancer–gene pair
predictions. VEL coordinates were intersected using BedTools with this file to
assign putative gene targets. PreSTIGE predicted target genes of recurrent gained
(G10þ ) and lost (L14þ ) VELs are listed in Supplementary Data 7 and 8.

Correlation of VELs and target gene expression. For each of the 22 CRC lines
with expression data, genes were grouped based on the number of associated
gained or lost VELs, removing genes associated with both VEL types and genes that
were expressed at or below background noise levels in either the CRC line or
normal crypt samples. Expressed genes not associated with any VELs were assigned
to the nonVEL control set. MWW tests were used to determine statistical differ-
ences of gene sets versus the control (nonVEL) genes. Data was boxplotted in R,

removing outliers. For the analyses presented in Fig. 1e, genesets were collapsed
across all CRC samples. Significance testing and plotting were performed
identically for gene sets defined by the recurrence of associated VELs
(Supplementary Fig. 2a). To assess whether recurrent VEL genes were reproducibly
dysregulated in patient tumour samples, first, genes dysregulated in the 22 CRC cell
lines with microarray expression data were identified, regardless of association with
VELs. Genes were classified as overexpressed if they showed more than a 50%
increase in expression over normal colon in at least half of the CRC lines, that is,
for Z11/22 CRC lines, (CRC expression)/median(crypt expression)41.5
(n¼ 1686 genes). Underexpressed genes were defined as those showing more than
a 50% greater expression in normal colon in at least half of the CRC lines, that is,
for Z11/22 CRC lines, (median(crypt expression)/(CRC expression)41.5
(n¼ 1396 genes). Next, dysregulated genes were classified based on VEL status into
four groups: overexpressed genes not associated with any VELs (n¼ 1106 genes),
overexpressed genes associated with recurrent gained VELs (G10þ , n¼ 352),
underexpressed genes not associated with any VELs (n¼ 418) and underexpressed
genes associated with recurrent lost VELs genes (L14þ , n¼ 589). Dysregulated
recurrent VEL genes, regardless of validation, were visualized in a row-normalized
heatmap (Fig. 2d). Finally, the number of genes in each group that were similarly
misexpressed in the 120 primary CRC samples was determined to calculate a
validation rate. Misexpression in the microarray data for 120 primary CRC samples
was defined analogously to the CRC cell lines, such that for overexpressed genes,
(primary CRC expression)/median(normal tissue expression)41.5 in Z60/120
samples, and for underexpressed genes, median(normal tissue expression)/
(primary CRC expression)41.5 in Z60/120 samples. Significance was calculated
by w2 tests.

CRISPR–Cas9-mediated enhancer disruption. Enhancer editing was performed
in collaboration with the Genome Engineering and iPSC Center (GEiC) at
Washington University. Guide RNA (gRNA) sequences were designed and then
used to target disruption of putative enhancers at the PHLDA1 and MYC loci
(Supplementary Data 9). For each target enhancer, we utilized a CRISPR–Cas9-
based strategy whereby the enhancers are first cut with gRNA-directed Cas9, and
then antibiotic resistance cassettes including an exogenous promoter are inserted
at the cut site via non-homologous end joining (NHEJ). HCT116 cells are
co-transfected with (1) enhancer-specific gRNA expression plasmids, (2) a
linearizing gRNA expression plasmid, (3) a Cas9 expression plasmid, (4) a donor
plasmid containing PGK-driven puromycin resistance gene (PuroR) flanked by the
linearizing gRNA target sites and (5) a donor plasmid containing PGK-driven
blasticidin (BlastR) resistance gene flanked by linearizing gRNA target sites. The
co-transfection of these reagents yields blunt-ended, linearized puroR and BlastR
‘armless’ sequences that are then incorporated via NHEJ in the site cut after
cleavage of the genomic DNA by the enhancer-specific gRNA. Pools of edited cells
are then selected by sequential drug selection to blasticidin and puromycin.
Correctly edited cell pools are then verified by PCR, using primer pairs in which
one primer lies either 50 or 30 to the endogenous cut site, and the corresponding
primer lies within either the blast or puro sequences. All seven enhancers targeted
for disruption using this strategy were verified by PCR to contain both targeted
blasticidin and puromycin resistance cassettes within the pool of cells. RNA was
extracted from CRISPR–Cas-edited cell pools and unedited parental cells via Trizol
extraction. Real-time qPCR was performed using TaqMan probes to PHLDA1 and
MYC. GAPDH was used as an endogenous control.

Gene ontology and network analysis. GO analyses were performed on genes
associated with recurrent gained and lost VELs (G10þ and L14þ ) using g:Profiler
and the Enrichment Map plug-in to Cytoscape68–70. P value and FDR cutoffs used
were both o0.05.

Transcription factor enrichment. TF motif enrichment analysis was performed
with the findMotifsGenome tool in the HOMER command line software
(http://homer.salk.edu/homer/index.html) using unique gained VELs (gained VELs
present in exactly one CRC line) as the background set (� bg option). For the
analysis of experimentally determined TF binding sites in colon, ChIP-seq peak bed
files for factors profiled in colon were retrieved from the Cistrome Data Browser.
Coordinates were converted from hg38 to hg19 using the UCSC Genome
Browser liftOver command line tool (https://genome.ucsc.edu/goldenpath/help/
hgTracksHelp.html#Convert). Gained VELs from the master list were intersected
with peak coordinates of each factor. Next, for each recurrence level (1–31 CRC
lines), we calculated the proportion of all gained VELs with recurrence at or above
that number that overlapped each factor. Using linear modelling in R, best fit lines
were calculated for this data. To determine which factors showed the greatest
increase of binding site enrichment with recurrence, factors were ranked by the
slope of their best fit lines.

Association with CRC GWAS risk loci. SNPs associated with CRC by GWAS
were retrieved from the NHGRI-EBI GWAS Catalogue (http://www.ebi.ac.uk/
gwas/) on June 15, 2015 (ref. 37). Linkage disequilibrium (LD) information was
pulled from HapMap, and used to identify SNPs in tight LD (LOD42, D040.99)
with each GWAS lead SNP in the population in which the SNP was found to be

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14400 ARTICLE

NATURE COMMUNICATIONS | 8:14400 |DOI: 10.1038/ncomms14400 |www.nature.com/naturecommunications 11

http://hannonlab.cshl.edu/fastx_toolkit/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
https://sites.google.com/site/anshulkundaje/projects/blacklists
https://sites.google.com/site/anshulkundaje/projects/blacklists
http://homer.salk.edu/homer/index.html
https://genome.ucsc.edu/goldenpath/help/hgTracksHelp.html#Convert
https://genome.ucsc.edu/goldenpath/help/hgTracksHelp.html#Convert
http://www.ebi.ac.uk/gwas/
http://www.ebi.ac.uk/gwas/
http://www.nature.com/naturecommunications


associated with CRC risk (CEU, JPT or YRI). GWAS SNPs that lacked any LD
SNPs were removed, leaving 75 lead SNPs. All analyses were performed with each
lead SNP and its set of LD SNPs considered as a unit that is, if a genomic feature
overlapped a lead SNP or any of its LD SNPs, then the feature and lead SNP were
considered associated. VSE was performed as previously described3,13,38. Briefly,
1,000 sets of 75 SNPs were randomly selected such that the number of LD SNPs
matched the CRC risk SNP set. The proportion of the random SNPs associated
with each genomic feature of interest was calculated, and the distribution of the
randoms was used to generate a P value for enrichment (Fig. 3b). Predicted target
genes of SNP-associated VELs were determined using PreSTIGE (as described
above), or by nearest expressed gene for VELs without PreSTIGE predictions, as
well as previous publications71–75.

JQ1 experiments. 2,500–5,000 cells per well were plated in a 96-well plate and the
following day were treated in triplicate or quadruplicate with a range of JQ1
concentrations (100–5,000 nM) or vehicle (0.1% DMSO (v/v). Relative cell number
was assessed 72 h later using the CellTiter-Glo assay (Promega, cat. G7572)
according to the manufacturer’s protocol, and the luminescence was measured on a
Wallac Victor3 V 1420 Multilabel Counter and IC50 values were calculated from
these data. For cell-cycle assays, cells were plated to at B1� 106 cells per well in
six-well plates. The following day, cells were treated with 500 nM JQ1 or 0.05%
DMSO (v/v) control. After 48 h, cells were harvested, 2� 106 cells were resus-
pended in 1ml cold PBS. Cells were fixed by adding dropwise to 9ml cold 70%
ethanol, and incubated overnight at � 20 �C. Cells were stained with propidium
iodide (Life Technologies, cat. P3566) in PBSþ 0.1% Triton-X and incubated
30min at 37 �C, then were kept at 4 �C until analysed on a Beckman-Coulter Epics
XL. For apoptosis assays, cells were plated to at B1� 106 cells per well in 6-well
plates. The following day, cells were treated with 500 nM JQ1, 50 nM staurosporine,
or 0.05% DMSO (v/v) control. After 48 h, cells were harvested (discarding media
and non-adherent cells) and 1� 106 cells were stained using the FITC Annexin V
Apoptosis Detection Kit I (BD Biosciences, cat. 556547) according to the
manufacturer’s protocol and promptly analysed on a Beckman-Coulter Epics XL.
WinList 3D, and WinList 3D plus ModFit (Verity Software House) were used for
apoptosis and cell-cycle analysis, respectively. All assays were run in biological
duplicates. For gene expression analyses, cells were plated at B0.5� 106 cells per
well in six-well plates and treated with 500 nM JQ1 for 0.5, 1, 6, or 24 h, or 0 h as a
control, following which cells were lysed and RNA extracted with TRIzol (Life
Technologies, 15596-026) according to the manufacturer’s protocol. RNA-seq was
carried out on an Illumina HiSeq, and 100 bp paired-end reads were obtained.
Sequences were aligned to the genome using TopHat v1.3.2 and fragments
per kilobase per million reads (FPKMs) were calculated using Cufflinks v1.3.0
(refs 76,77). FPKM values were floored to 0.3 and FPKMs were quantile
normalized to minimize potential technical artifacts. Only genes actively expressed
(defined as more than twice the background signal, FPKM40.6) in untreated
controls were considered, resulting in 11,253–11,302 genes per CRC line. For each
of the six CRC lines tested, genes were grouped based on the number and
recurrence of associated gained VELs, removing any genes also associated with
recurrent lost VELs. The fold change in expression at each treatment time point
compared with control (expression tx/expression t0) was calculated for each gene.
MWW tests of each gained VEL gene set against the control set of all expressed
genes were performed to determine significance.

Gene set enrichment analysis. Genes that were both associated with recurrent
gained VELs (G10þ ) present in HCT116 and 1.5-fold overexpressed in HCT116
compared with normal colon were identified. GSEA was performed using the
GseaPreranked tool in command line software v2.2.0 (software.broadinstitute.org/
gsea/downloads.jsp78; to assess enrichment of the HCT116 recurrent VEL gene set
in a ranked list of ‘fitness’ genes in HCT116 from the Toronto KnockOut (TKO)
library50.

Mouse xenografts. Tumours were induced by subcutaneous injection of
B0.5–10� 106 cells into the flank of six to eight week old, female nude mice
obtained from the Athymic Animal and Xenograft Core of the Case
Comprehensive Cancer Center. CRC lines chosen for xenograft tested negative for
mycoplasma and other contaminations. Mice were monitored until tumour size
reached B75–100mm3, at which point treatment was initiated. Mice received
either 50mg kg� 1 JQ1 (or vehicle) by intraperitoneal injection once each day or
20mg kg� 1 JQ1 (or vehicle) intraperitoneal injection twice each day for 27 days,
with ten mice per group. Post-hoc power analysis indicates that with this sample
size and a error¼ 0.05, effects sizes of 1.3 will be detected with power (1�b error)
0.8. Mouse xenograft studies were performed in accordance with protocols
approved by the Case Western Reserve University Institutional Animal Care and
Use Committee (Protocol Number: 2013-0179), and in collaboration with the
Athymic Animal and Xenograft Core of the Case Comprehensive Cancer Center.

Data availability. All sequencing data has been deposited in the GEO database
under accession codes GSE77737 (new datasets) and GSE36401 (previously
published datasets). The authors declare that all data supporting the findings of this

study are available within the article and its Supplementary Information Files or
from the corresponding author upon reasonable request.
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