Figure 1: Antibody-templated strand exchange allows translation from antibody to DNA. | Nature Communications

Figure 1: Antibody-templated strand exchange allows translation from antibody to DNA.

From: Antibody-controlled actuation of DNA-based molecular circuits

Figure 1

(a) Principle of ATSE. In the absence of antibody (Ab) the strand exchange reaction is thermodynamically unfavourable and remains in the initial state with output strand (O) hybridized to the peptide-functionalized base strand (B). Scaffolding of the oligonucleotide reactants on the input antibody initiates intramolecular toehold-mediated strand exchange, forming a stable intramolecular bivalent complex (BI) and displacing O in solution. Activation of O is monitored by a downstream reporter duplex (Rep), resulting in a stoichiometric increase in fluorescence. (b) Monitoring the release of output strand O as a function of toehold length T in the absence (black) and presence of 5 nM of anti-HA antibody (red) or 5 nM anti-HIV1-p17 antibody (green). One normalized unit (n.u.) represents the fluorescence generated by the displacement of Rep by 1 nM O. (c) Apparent first-order rate constants (kobs) obtained by fitting the kinetic traces shown in (b) using a single exponential. (d) Signal to background ratios as a function of T obtained by dividing the antibody-templated first-order rate constants by the background rate constants. All experiments were performed with [BO]=5.5 nM, [I]=5 nM, [Ab]=5 nM and [Rep]=10 nM at 28 °C in TE/Mg2+ buffer supplemented with 1 mg ml−1 BSA. Error bars represent the standard error of estimated value of kobs calculated from the Fisher information matrix.

Back to article page