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Direct experimental determination of the
topological winding number of skyrmions
in Cu2OSeO3

S.L. Zhang1, G. van der Laan2 & T. Hesjedal1

The mathematical concept of topology has brought about significant advantages that allow

for a fundamental understanding of the underlying physics of a system. In magnetism, the

topology of spin order manifests itself in the topological winding number which plays a pivotal

role for the determination of the emergent properties of a system. However, the direct

experimental determination of the topological winding number of a magnetically ordered

system remains elusive. Here, we present a direct relationship between the topological

winding number of the spin texture and the polarized resonant X-ray scattering process. This

relationship provides a one-to-one correspondence between the measured scattering signal

and the winding number. We demonstrate that the exact topological quantities of the

skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This

technique has the potential to be applicable to a wide range of materials, allowing for a direct

determination of their topological properties.
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I
n a many-body system, a local order parameter can be
assigned to individual entities, and by considering interactions
among them, emergent phases and novel physical properties

may evolve. The possible values of the order parameters
constitute the order parameter space, which can be described in
the framework of topology1,2. In magnetism, the spins are the
elementary entities, and the order parameter is the magnetization
vector m. Its magnitude can be taken as a constant, that is,
its three components satisfy m2

1 þm2
2 þm2

3¼M2
S , where MS is

the saturation magnetization. Therefore, the order parameter
space is the surface of a three-dimensional unit sphere, which is
described by the homotopy group p2(S2) for a two-dimensional
physical space (x, y) (ref. 2). Different homotopy classes
with distinct topological properties can be quantified based on
the winding number N, which is an integer that counts the
number of times the physical space fully covers the order
parameter space3. It is defined as

N¼ 1
4p

Z
@m
@x

� @m
@y

� �
�m dx dy: ð1Þ

Recently, it has been demonstrated that non-centrosymmetric
helimagnetic materials carry N¼ 1 magnetic skyrmions4–6,
which leads to emergent phenomena, including novel magneto-
electrical transport effects (that is, the topological Hall effect7–9,
skyrmion motion induced by ultralow current densities10–13,
and emergent electromagnetic fields14–16), as well as new spin
dynamic properties17–19. Utilizing this nontrivial topological
order, advanced spintronics applications have been devised20–24.
More recently, several candidates with N¼ 2 have also been
discovered25,26, suggesting that other elements from the p2(S2)
group may exist in nature as well.

While the significance of the topological properties of ordered
systems is being recognized more and more, the experimental
determination of the winding number for spin-ordered media
remains challenging. Commonly, the winding number is
determined by comparing a microscopic image of the magnetiza-
tion state with theoretical model calculations, making it a rather
indirect process that has no unique answer21–24,27–29. Most
importantly, the established magnetic imaging techniques only
give a partial picture of the local magnetization vector, as they are
both limited in three-dimensional sensitivity and lateral
resolution. For example, Lorentz transmission electron
microscopy (LTEM) has been the most common technique
which is used to infer the topological winding number from
a magnetization map27. In most of the LTEM experiments,
the magnetization configuration is obtained via an indirect
transport-of-intensity equation simulation process, and, most
importantly, the information of the out-of-plane spin component
is missing27. Consequently, LTEM is not a direct experimental
method30 to determine the topological winding number (see
Supplementary Note 3 for a detailed discussion). On the other
hand, the presence of skyrmions leads to measurable signals in
electric transport, that is, the topological Hall effect9.
Nevertheless, other non-collinear magnetic structures, which are
not related to skyrmions, can also give rise to a measurable
topological Hall effect7,31, rendering transport measurements less
ideal for the unambiguous determination of topological
properties.

Here, we show that the winding number N can be
unambiguously identified by utilizing the sensitivity of the
light polarization to the magnetic order at resonant elastic
X-ray scattering (REXS) condition, referred as polarization-
dependent REXS.

Results
Representation of a skyrmion with winding number N.
A general magnetic skyrmion structure can be obtained
by mapping the order parameter space to the physical
space, described in the two-dimensional polar coordinates
r (radial coordinate) and C (azimuthal angle), in the following
way4,32:

m1 ¼ MS sinYðrÞ cos NðCþ wÞ½ �;
m2 ¼ MS sinYðrÞ sin NðCþ wÞ½ �;
m3 ¼ MSl cosYðrÞ;

ð2Þ

where the boundary conditions are defined such that the
magnetization points up in the centre of the two-dimensional
physical space and down at the boundary. The function
Y(r) describes the radial profile of the out-of-plane component
of the magnetization, starting from the centre and extending to
the boundary; w is the helicity, defined in the range of (� p, p];
and l takes the values of ±1, describing the polarity of
the skyrmion4. For example, an N¼ 1 skyrmion appears as
a vortex-like texture. If the core magnetization points up (that is,
l¼ 1), a w¼ �p/2 skyrmion has a clockwise rotation sense when
viewing from the top. The entire texture thus carries negative
chirality, defined by C¼ sgn(lw). Analogously, a w¼ p/2
skyrmion carries positive chirality. On the other hand, for w¼ 0
and w¼p skyrmions, so-called Néel-type skyrmions, there is no
chirality present33.

Another, more illustrative way to interpret equation (2), is to
construct an N-skyrmion texture by assigning a one-dimensional
helix spin profile to a radial chain in physical space, and by
repeating the process for all azimuthal angles C, in the range
from 0� to 360�, thereby mapping out the entire two-dimensional
physical space. This concept is illustrated in Fig. 1a–c. Starting
from the line for C¼ 0� that is parallel to x axis, a standard
harmonic helix structure is assigned. Subsequent C angles get
a helix assigned that is rotated by NC from C¼ 0�. As as result,
when the two-dimensional physical space is fully sampled,
the order parameter space will have been mapped out N times.
The exact structure of such harmonic helices does not affect
the topological properties of the system, nor our measurement
principle, as will be shown below. Using this one-dimensional
helix approximation, an analytical solution for the polarization-
dependent REXS process can be obtained that is explicit in N.

Topology determination principle. The measurement
geometry for determining N is illustrated in Fig. 1d. The
incident and scattered X-ray wavevectors are denoted as ki and ks,
with the incident angle a, which satisfies the diffraction condition
Q¼ ks� ki. The incident X-rays can be linearly polarized
with the polarization angle b. We define b¼ 0� corresponding
to s-polarization, while b¼ 90� corresponds to p-polarization.
Alternatively, the light can be circularly polarized. Here, we
define the circular dichroism (CD) signal as the difference
of the scattering cross-sections for left-circularly and right-
circularly polarized incident light (at the same diffraction
condition).

We demonstrate our new experimental principle for the
determination of N on the magnetic skyrmion system Cu2OSeO3.
This material carries an incommensurate, hexagonal lattice
with an Na0 topological entity motif34–36. The modulation
wavevector is B0.0158 r.l.u., and the motif’s periodic
lattice lies in the x–y-plane when the required magnetic field is
along the z direction37 (see Fig. 1). Using the one-dimensional
helix approximation construction, an analytical form
of the resonant magnetic diffraction cross-section I and
the CD cross-section ICD can be derived as a function of
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N (see Methods for the derivation)

Iðb;C;NÞ ¼ Y sin2aþY cos2a sin2ðNCþF2Þ
þ 4Y cos2a sin2a cos2ðNCþF2Þ sin2b
�Y cos2a sin a sinð2NCþ 2F2Þ sin 2b;

ð3Þ
and

ICDðC;NÞ¼ C cos NCþF1ð Þ ; forN odd;
0 ; forN even;

�
ð4Þ

where C and Y are constants. The arbitrary phase parameters
F1 and F2 can be chosen to adapt to other spin configurations
with the same winding number, however, which deviate from
the ‘standard’ configuration as constructed in Fig. 1a. These
two relationships can be interpreted in the following way,
which form the core of our experimental method for the
determination of the winding number: In case of an odd
winding number, N equals to the periodicity of the CD signal,
while C covers the full range from 0� to 360�. N is also equal
to half the number of peaks in the polarization-azimuthal
map (PAM; see below). For an even winding number, no
CD signal is observed. The case of non-integer winding numbers
is discussed in Supplementary Note 2.

Numerical results. Figure 2e–h shows the numerical calculation
results for the CD cross-section for different topological
spin motifs. Equation (4) can be represented by the CD amplitude
as a function of a closed-loop in reciprocal space. Each reciprocal
space point (qdiffx , qdiffy ) on the loop (shown in red) corresponds to
one azimuthal angle at which the diffraction condition for
the modulation wavevector for C is met. Therefore, according
to equation (4), the CD intensity varies as a function of C,
with a periodicity that is equal to N if the spin winding is an
odd number. For even winding numbers, such as N¼ 2, there
is no CD. This can be understood by treating a N¼ 2 skyrmion as

two N¼ 1 skyrmions pulled together2 (see Fig. 2b). These
two N¼ 1 skyrmions have opposite chirality, thus there is no
global chirality of this spin configuration. As CD is sensitive
to chiral structures38, the total CD for this state is zero. This
also applies for other even winding number systems.

On the other hand, by varying the linear polarization b of the
incident light from 0� to 180�, one can measure the polarization-
dependent scattering intensity at each C. By covering C in
the range from 0� to 360�, a PAM is obtained. The PAM plot
in Fig. 2i–l shows hump-like, two-dimensional peaks of
equal height. The peaks appear around bE90�, and modulate
along C. The periodicity of the PAM signal is twice that of
the winding number. This PAM feature is consistent with
the analytical solution described by equation (3).

If both the CD and PAM data can be fitted by the
two equations (3) and (4) simultaneously, the winding number
can be unambiguously determined. If the detailed spin structure
of the motif varies, such that the exact mapping from physical
space to order parameter space changes within the same
homotopy class, the corresponding shapes of the CD and
PAM signals only undergo a linear shift, while the periodicities
do not change (see Supplementary Note 1). Therefore, the
topological robustness is also reflected in this type of X-ray
scattering measurement.

Experimental demonstration. To demonstrate the measurement
principle, we performed experiments on single-crystalline
Cu2OSeO3 with the setup sketched in Fig. 1d. At 57K, and in
an applied magnetic field of 32mT, the skyrmion lattice
phase emerges, manifesting itself as a hexagonal lattice of N¼ 1
topological motifs. The lattice gives rise to the six-fold-symmetric
diffraction pattern in reciprocal space, shown in Fig. 3a. The
six sharp first-order magnetic peaks correspond to the ‘unit cell’
of the skyrmion lattice, with one of them locked along h, that is,
the [100] crystallographic direction in real space. This is due
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Figure 1 | Concept of winding number and experimental setup. (a) For classical spins in two-dimensional space, the spin configuration that carries

a winding number of N, as described by equation (1), can be equivalently constructed by mapping the two-dimensional physical space using

one-dimensional helices. In order parameter space, the one-dimensional helices are rotated azimuthally by NC from the base position (see, for example,

bottom spin helix for C¼0�), and projected onto physical space at the azimuthal position C. The helices are stacked up in order parameter space for

illustrative purposes following the red helical guideline. The example shows the situation for N¼ 2 where the order parameter space maps the physical

space twice. The shaded quarter-circle in physical space (below) corresponds to a covered half-circle in order parameter space (above). Simplified plots for

the N¼ 1 and N¼ 3 cases are shown in b,c, respectively. (d) WhenC covers the range from 0� to 360�, the scattered intensity will exhibit a periodicity that

only depends on N. Both circularly or linearly polarized incident light is used, allowing for two measurement strategies: CD plots and PAMs. In both cases,

the diffraction condition is met for the wavevector Q, which contains the topological motif’s modulation wavevector for different azimuthal angles C. The

polarization angle b of the incident light polarization vector Ei is defined with respect to s-polarization (b¼0�; b¼ 90� corresponds to p-polarization).
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to the higher-order magnetic anisotropy of the material34,36,37.
Note that the coordinates (qx, qy) used here, as defined in Fig. 1d,
are independent of the crystallographic directions. Therefore,
by rotating C, the same modulation wavevectors rotate
accordingly in the coordinate system (see Fig. 3b,c). The
measured CD intensity as a function of C (see Fig. 3d) shows
exactly one period when the X-rays map the physical space once,
suggesting that the skyrmion motif has a winding number of
N¼ 1. Moreover, as shown in Fig. 3e,f, the PAM is in excellent
agreement with the theoretical calculations presented in Fig. 2i.
The equal height of the two humps confirms the N¼ 1 topology
of this material.

Discussion
Another type of N¼ 1 system, which does not carry chirality, is
the so-called Néel-type skyrmion33 (see Fig. 4a). Its spin texture
has a different appearance; however, it is topologically equivalent
to the other skyrmion form. Consequently, the CD profile in
Fig. 4b shows the same periodicity; however, a constant
phase shift, as compared with Fig. 2e, appears. The phase shift,
on the other hand, is due to the different mapping of the spin
configuration under a continuous transformation. The analytical
solution takes the value of F1¼ p/2 for equation (4). The same
behaviour is found for the PAM, as shown in Fig. 4c, for which

the shape and height of the two humps are essentially the same as
in Fig. 2i; however, the entire pattern undergoes
a linear shift along C. The analytical solution takes the value
of F2¼p/6 for equation (3). Moreover, if the winding number is
negative (see Fig. 4d), the CD signal still shows the same
periodicity, that is, it does not distinguish between N and �N.
However, the appearance of the humps is fundamentally different
(compare Fig. 4f with Fig. 4c).

In summary, we have demonstrated that for a long-wavelength
magnetically ordered system, the topological winding number of
the motif can be unambiguously determined by polarized X-rays.
First, our polarization-dependent REXS strategy is a direct
measurement method as the winding number is naturally
encoded in the underlying physics of the light–matter interaction,
and is explicit in the measurement principle, expressed in
equation (3) and (4). Second, although we used resonant soft
X-ray diffraction for the demonstration of the measurement
principle, the fundamentally same theory, with slight modifica-
tions, can be applied to the hard X-ray wavelength regime as well.
It can further be expanded to non-resonant magnetic X-ray
scattering by adding certain corrections. Third, this experimental
technique can be applied to a wide range of magnetic systems,
including both metallic and insulating materials, as well as other
genres of materials that host topologically ordered spin systems,
making it a general experimental principle.
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Figure 2 | Numerical determination of the topological winding number. (a–d) Spin configurations with topological winding numbers of 1, 2, 3 and 5,

respectively. These spin textures are the motifs that generate the two-dimensional, periodically ordered lattices which can be measured by diffraction

techniques. (e–h) CD cross-section as a function of C for topologically ordered systems. Here, C is represented by a loop (shown in red) in reciprocal

space (qdiffx , qdiffy ), where qdiffx ¼ q cos C, qdiffy ¼ q sin C, and q¼0.0158 r.l.u. is the absolute value of the skyrmion lattice modulation wavevector for

Cu2OSeO3. The condition for vanishing CD (CD¼0) is indicated by the light blue plane. The CD signal is symmetric about this plane for integer winding

numbers. The periodicity of the CD modulation equals to N. Note that for even N the CD signal is zero. (i–l) PAMs. The calculations are performed by

rotating b from 0� to 180� at eachC, and by mapping out C from 0� to 360�. The total number of humps is equivalent to 2N. Note that for integer winding

numbers the humps are of equal height.
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Methods
Polarization-dependent resonant magnetic X-ray scattering. For the derivation
of the polarization-dependent REXS signal of an N-skyrmion system, we start
from the basic resonant X-ray scattering process from chiral magnets39–42. For
a single magnetic ion at site n carrying a moment mn the resonant scattering form
factor in the electric-dipole approximation takes the form:

fn¼f0 E�s � Ei
� �

� if1 E�s�Ei
� �

�mn; ð5Þ
where Ei and Es are the polarization unit vectors of the incident and outgoing
X-rays, and the asterisks denotes the complex conjugate. The f0 and f1 terms are
the charge and the linear magnetic part of the energy-dependent resonance
amplitude, respectively. The f0 term describes the anomalous charge scattering at
resonance, which is added to the Thomson scattering part. The f1 term describes
resonant magnetic scattering, which can be of the same order of magnitude as
charge scattering. In equation (5), we have neglected the term that is quadratic in
the magnetization as it is much smaller than the leading terms, and which gives rise
to higher-order effects.

In the first Born approximation, the diffraction intensity for the scattering
vector Q¼ ks� ki from a periodic lattice with sites rn can be written as

IðQÞ /
X
n

fne
iQ�rn

�����
�����
2

: ð6Þ

The complex amplitudes f0 and f1 are energy-dependent. Here we take them as
constant, since in our numerical calculations the photon energy is not varied.

The coordinate system used to carry out the polarization-dependent study
of the scattering cross-section is shown in Fig. 1b. The Cartesian coordinates are
determined by the scattering plane (containing Q), that is, the x–z-plane in this case.
The y axis is perpendicular to this plane. This defines the three components for the
magnetization vectors, as well as the reciprocal space coordinates (qx, qy, qz). Thus,
ki¼ k(cos a, 0, sin a), ks¼ k(cos a, 0, � sin a), ks� ki¼ k(0, � 2 cos a sin a, 0),
where the magnitude of the X-ray wavevector, k, relates to the photon energy
[k¼ 2p/l¼E/(:c)].

In the Poincaré-Stokes representation, the polarization of the incident X-rays is
characterized by P¼ (P0, P1, P2, P3). For left- and right-circularly polarized light,
P0¼ 1, P1¼ P2¼ 0, P3¼±1. For linearly polarized light, P0¼ 1, P1¼ cos 2b,
P2¼ sin 2b, P3¼ 0.

For a magnetic system carrying incommensurate magnetic modulations,
magnetic diffraction occurs as satellites q surrounding the structure peak G, so that
Q¼Gþ q. Therefore, the charge and magnetic part of the diffraction can be
separated, and no charge-magnetic interference term is expected. Consequently,
at the diffraction condition for the periodic magnetic structure, the scattering
intensity is described by the magnetic part (that is, second term of equation (5)).
It is straightforward, but rather tedious, to derive the intensity for the magnetic
scattering, which is given by41:

IðQÞ ¼ 1
2 F1j j2 P0 þ P1ð Þ ks �MðQÞj j2

þ 1
2 F1j j2 P0 � P1ð Þ ki �MðQÞj j2 þ ks�kið Þ �MðQÞj j2

� 	
� F1j j2Re P2 þ iP3ð Þ ks �M�ðQÞð Þ ks�kið Þ �MðQÞ½ �;

ð7Þ

where F1 is the energy-dependent resonant term, and M(Q) is the Fourier
transform of the real-space magnetic moment modulation m(r) at Q. Note that
ki and ks are tuned to fulfil the diffraction condition for Q.

X-ray polarization dependence of the winding number. As shown in Fig. 1a,
a one-dimensional proper-screw helix pitch43, otherwise called ‘Bloch-type’ helix,
propagating along x, can be written as

m1 ¼ 0;
m2 ¼ MS cos qh � rð Þ;
m3 ¼ MS sin qh � rð Þ;

ð8Þ

where qh is the helix propagation wavevector. We define a base position of the helix
such that qh is along the x axis, this also corresponds to C¼ 0�. While the X-rays
probe the physical space at an finite angle C, the order parameter space
magnetization profile rotates the base helix position specified by equation (8) by
NC within the qx–qy-plane. By applying the rotation matrix

RNC ¼
cosðNCÞ � sinðNCÞ 0
sinðNCÞ cosðNCÞ 0

0 0 1

0
@

1
A to equation (8), the rotated magnetic

structure becomes

m1 ¼ �MS sinðNCÞ cos qh � rð Þ;
m2 ¼ MS cosðNCÞcos qh � rð Þ;
m3 ¼ MS sin qh � rð Þ:

ð9Þ
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Figure 3 | Experimental determination of the topological winding number. (a–c) Resonant soft X-ray magnetic diffraction from Cu2OSeO3 for three

different azimuthal angles: C¼ 5.95�, 29.56� and 50.17�, respectively. The photon energy is tuned to 931.25 eV and the magnetic satellites are observed

around the (001) structural peak. The figures show the reciprocal space maps within the (hk1)-plane, obtained by integrating the scattering intensities for

left- and right-circularly polarized incident light. The coordinate system is defined in Fig. 1d. The temperature was 57K and the applied magnetic field of

32mTalong the z direction, which is also parallel to the [001] crystallographic direction. (d) CD signal as a function of C. The black dots are the measured

data, while the red line is a fit using equation (3). (e) Measured PAM, and (f) interpolation obtained by fitting equation (4). The interpolated PAM shows

excellent agreement with the calculated result shown in Fig. 2i, in which two humps of equal height can be observed at bE90�.
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To meet the diffraction condition for Q¼Gþ qh at C, one has to bring Q into the
scattering plane. In a common four-circle diffractometer, this is achieved by
compensating the diffraction offset with the other two rotation axes, that is, the
a axis, and the k axis, which is perpendicular to both the a and C axes. As
a consequence, the components of the magnetic structure transform into:

m0
1

m0
2

m0
3

0
@

1
A¼RaRk

m1

m2

m3

0
@

1
A; ð10Þ

where Rk and Ra are the rotation matrices corresponding to the k and
a rotation axes, and the combination of the two rotations brings Q into the
scattering plane for the diffraction condition.

However, it is essential to note that this change would be negligible for most
of the long-wavelength modulated magnetic structures. For example, Cu2OSeO3

has qa¼ 0.0158 (ref. 37), where a is the lattice constant. Therefore, for
G¼ (0, 0, 1), Q¼Gþ qh, the change of a is less than 0.9� for all C angles. This
makes Rk and Ra � 1. Therefore, the long-wavelength approximation suggests

m0
1

m0
2

m0
3

0
@

1
A �

m1

m2

m3

0
@

1
A, as well as M(Q)EM(qh), and we can take one angle a for the

diffraction condition of all C positions.
Thus, the Fourier transform of equation (9) at the diffraction condition of

qh takes the form

M1 qh;Cð Þ ¼ �pMS sinðNCÞ;
M2 qh;Cð Þ ¼ pMS cosðNCÞ;
M2 qh;Cð Þ ¼ � ipMS:

ð11Þ

Inserting equation (11) into equation (7), and evaluating the expressions
described above, the CD profile is obtained as

ICD¼4Y sin2a cos a cosðNCÞ; ð12Þ
where Y¼p2 F1j j2k2M2

S . However, note that the CD intensity is zero for even values
of N. This condition is not captured by the analytical relationship of equation (12);
however, it can be generalized from the numerical calculations.
The reason why the CD vanishes is discussed in the main text, and is based on
the assumption that, for an example, an N¼ 2 skyrmion can be considered as
two N¼ 1 skyrmions pulled together2. The ‘chirality cancelling’ effect does not
occur for odd winding number motifs; however, it exists for all even winding

numbers. Moreover, as will be discussed shortly, adding another phase factor F1 is
also necessary for generalizing the CD relationship to N-skyrmions.

The linear polarization dependence can be derived as

I ¼ Y sin2aþY cos2a sin2ðNCÞ
þ 4Y cos2a sin2a cos2ðNCÞ sin2b
� Y cos2a sin a sinð2NCÞ sin 2b

ð13Þ

Equations (12) and (13) are the foundation of our measurement principle, and
are derived based on a standard one-dimensional helix structure. Therefore, this
analytical form is only valid for ‘standard’ types of spin configurations, for an
example, N¼ 1 chiral skyrmions with w¼±p/2. However, in principle, there is an
infinite number of homotopies for a certain winding number, that is, the same
topological property will always hold if continuous transformations are acting on
a ‘standard’ skyrmion configuration, as we have used and derived so far. For
example, if the one-dimensional helix takes other forms, such as a cycloidal type
structure33, the overall spin texture will change while the winding number remains
invariant. As shown in the Supplementary Note 1, this degree of freedom is dealt
with by adding a phase factor to equations (12) and (13), which makes the
measurement principle generally valid for all cases.

Numerical calculations. Numerical calculations were carried out using the
materials parameters of Cu2OSeO3, that is, a helix pitch of 60 nm. This leads
to a skyrmion core-to-core distance of B69.28 nm, as well as a wavevector of
B0.015 r.l.u. Resonant X-ray scattering at the Cu L3 edge with a photon energy of
931.25 eV gives k¼ 2p� 4.7187 nm� 1, with aE48.24� for the (0, 0, 1) diffraction
peak. In the calculation, F1 and MS are kept constant as the CD profile and
PAM are measured for the same photon energy and temperature. For detailed
numerical results, please see Supplementary Note 1.

REXS. Resonant soft X-ray scattering experiments were carried out in the RASOR
diffractometer on beamline I10 at the Diamond Light Source (UK). Single crystals
of Cu2OSeO3 are pre-characterized by X-ray diffraction and electron back-scat-
tering diffraction to confirm the crystalline quality and single chirality. Magneto-
metry measurements were performed to map out the magnetic phase diagram.
The polished crystal surface was (001)-oriented for the subsequent resonant X-ray
scattering measurements.
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Figure 4 | Robustness of the measurement principle. (a) Spin configuration of a Néel-type skyrmion with N¼ 1, (b) calculated CD profile, and,

(c) calculated PAM. (d) Spin configuration of an anti-skyrmion with N¼ � 1. Note that the anti-skyrmion, as well as other topological entities with negative

topological numbers, are not energetically stable states. Nevertheless, our experimental principle can be applied, as shown in e,f in which the CD profile and

PAM periodicity suggest the correct absolute value of the winding number. Moreover, negative winding numbers give rise to a fundamentally different PAM

shape of the humps. This provides an additional way to distinguish positive from negative values of N.
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The incident soft X-ray beam with variable polarization was tuned to the
Cu L3 edge. The experimental geometry is shown in Fig. 1d. The scattered beam is
captured by either a CCD camera or a photodiode point detector. The modulated
magnetic structure leads to satellites surrounding the structural peaks in reciprocal
space. Further details about the experimental methods on resonant soft X-ray
scattering can be found in refs 37,42. Polarization-dependent measurements are
performed by varying the incident light polarization, while measuring the
scattering intensities for different diffraction conditions for varying C.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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