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The role of anharmonic phonons in under-barrier
spin relaxation of single molecule magnets
Alessandro Lunghi1,2, Federico Totti1, Roberta Sessoli1 & Stefano Sanvito2

The use of single molecule magnets in mainstream electronics requires their magnetic

moment to be stable over long times. One can achieve such a goal by designing compounds

with spin-reversal barriers exceeding room temperature, namely with large uniaxial

anisotropies. Such strategy, however, has been defeated by several recent experiments

demonstrating under-barrier relaxation at high temperature, a behaviour today unexplained.

Here we propose spin–phonon coupling to be responsible for such anomaly. With a

combination of electronic structure theory and master equations we show that, in the

presence of phonon dissipation, the relevant energy scale for the spin relaxation is given by

the lower-lying phonon modes interacting with the local spins. These open a channel for spin

reversal at energies lower than that set by the magnetic anisotropy, producing fast under-

barrier spin relaxation. Our findings rationalize a significant body of experimental work and

suggest a possible strategy for engineering room temperature single molecule magnets.
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S
ingle molecule magnets (SMMs) are molecules comprising a
few magnetic ions, which show the properties of both bulk
magnets and low-dimensional systems1. For instance,

SMMs can display magnetic hysteresis together with quantum
tunnelling of the magnetization2. The magnetism of SMMs can be
characterized through relaxation experiments, where an ensemble
of molecules is polarized along the direction of an external
field and then the magnetization is monitored in time. At
high temperature, the relaxation time, t, exhibits an activated
Arrhenius-like behaviour t¼t0eUeff =kBT , with t0 being the inverse
attempt frequency, kB the Boltzmann constant and Ueff the
effective barrier for relaxation1. Clearly, the use of SMMs in
devices, such as non-volatile memories or simply long-living
quantum systems3, requires the relaxation times to be long
enough. This in turn means to design molecules with a large Ueff.

The spin relaxation effective barrier is related to the energies of
the spin excited states. For instance, the Hamiltonian of a spin
S system with uniaxial anisotropy and zero-field splitting, D, is
H¼�DŜ2z , so that Ueff¼ |D|S2. One has then two options for
enhancing the relaxation barrier, either increasing the molecule
total spin or designing compounds with very large magnetic
anisotropy (large D)4. The same argument, of course, applies to
any magnetic material and in fact the design of small magnetic
bits for data storage is accompanied by using hard magnetic
materials. In SMMs, one can use lanthanide ions as magnetic
centres and engineer the first coordination shell so to produce a
crystal field maximizing the magnetic anisotropy5. Such a strategy
to enhance Ueff has produced some success6–8, however, several
discrepancies remain. While significant deviations from the
Arrhenius behaviour at low temperature can be ascribed to
tunnelling effects1,2, there is now a consistent body of evidence
showing that the high-temperature spin relaxation follows a
thermally activated behaviour with an observed relaxation barrier
significantly lower than that measured by, for instance,
spectroscopic methods9–11. Furthermore, such deviations are
sometime more pronounced when D is large12.

Over-the-barrier activation is essentially a classical diffusive
process that requires the system to absorb enough energy to be
excited over a potential barrier. In SMMs, such energy is provided
by the interaction of the spin with the environment, namely with
the molecule vibrations. This is a spin–phonon relaxation
mechanism, also known as Orbach relaxation13. In a nutshell
(see Fig. 1), a phonon with energy :o¼U0, equal to the
difference between the energy of the ground state, E0, and that of
the first excited state, E2, is absorbed by the molecule. Such
excited state can then relax back to the ground state or to a
spin-flipped one of energy E1, which is typically quasi-degenerate
with the ground state. The phonon absorbed should have
two requirements: to be resonant with the first available
spin transition (with the energy barrier in Fig. 1), and to have
non-vanishing spin–phonon coupling.

Here we extend the concept of phonon-mediated spin rela-
xation to the more realistic case in which the phonons acquire a
finite lifetime, namely to the situation where the spin couples to
an anharmonic phonon bath. We will demonstrate that the finite
linewidth of the phonons spectral distribution allows an Orbach-
type spin relaxation mechanism even when the phonon is not
resonant at the spin excitation energy (see Fig. 1). This has the
effect of reducing the effective barrier for relaxation, consistently
with the most recent experiments. Such mechanism is first
illustrated with a model S¼ 1 spin system, and then calculated
with advanced electronic structure theory for a single crystal of
[(tpaPh)Fe]� molecules (S¼ 2), where the ligand H3tpaPh

corresponds to the tris((5-phenyl-1H-pyrrol-2-yl)methyl)amine.
Our findings introduce new important design elements in the
search for slow-relaxing SMMs, namely one has to maximize the

magnetic anisotropy and at the same time engineer the molecule
vibrations so to reduce the spin–phonon coupling or the phonon
dissipation in the spectral range close to the molecule spin
excitations.

Results
Spin–phonon dynamics theory. Let us start by writing down the
equations of motion for the coupled spin–phonon system.
The low-energy-lying SMM spectrum is composed by a mani-
fold of spin levels, whose degeneracy is removed by relati-
vistic interactions. The total electronic Hamiltonian can then be
written as Ĥ0¼ĤBO þ ĤSO, where ĤBO is the non-relativistic
Born–Oppenheimer Hamiltonian and all the spin–orbit interac-
tions have been included in ĤSO. The ionic degrees of freedom
are described by the normal modes of vibration through the
Hamiltonian, Ĥph¼

P
a ‘oa n̂a þ 1=2ð Þ, where n̂a¼âyaâa is the

phonon density operator and âya âað Þ is the creation (annihila-
tion) operator for a phonon of frequency oa. Molecular vibra-
tions, either within a single molecule or through the relative
motion of the molecules in a crystal, modulate the spin–orbit
interaction. This results in a spin–phonon coupling Hamiltonian
that in first approximation is linear in the ionic displacement,
q̂a¼ 1ffiffi

2
p âya þ âa

� �
, and can be written as

Ĥs� ph¼
X
a

@Ĥ0

@q̂a

� �
0

q̂a: ð1Þ

The dynamics of the entire system (spin plus phonons) follow the
time evolution of the total density operator, r̂ðtÞ,

dr̂ðtÞ
dt

¼ i
‘

r̂ðtÞ; Ĥ
� �

; ð2Þ

where Ĥ¼Ĥ0 þ Ĥph þ Ĥs� ph is the total Hamiltonian.
Equation (2) can be simplified by assuming that the phonon
dynamics is much faster than the spin one, as it is found for slow-
relaxing SMMs. The Born–Markov approximation allows us to
integrate out the phonons’ component of the density matrix and
reduces the problem to a purely electronic one in the presence of
a phonon bath. The dynamics of the spin degrees of freedom can
then be studied through the first-order-reduced spin density
operator, r̂S, as described by the diagonal elements of the Redfield
equation14
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where rSab¼ ah jr̂S bj i, Va
ab¼ ah j @Ĥ0

@q̂a
bj i, |ai is the eigenfunction of

the spin system described by the Hamiltonian H0 with energy Ea
and oab¼ (Ea� Eb)/:. Thus in equation (3) Va

ac

		 		2G oca;oað Þ
represents the kinetic rate of population transfer between the
eigenstates |ai and |ci.

The spectral representation of the Green’s function for the
phonon bath, G(oij, oa), is the central quantity of our discussion,
since it contains the temperature dependence of the spin
dynamics. A rigorous treatment of this quantity would require
knowledge of the phonons dissipation process, namely of the
anharmonic constants. This means solving the appropriate
phonons equations of motion or approximating the relevant
self-energy if a perturbative approach is possible. Until now, only
the zeroth-order term of G has been introduced into the
theory1,13. This corresponds to the ‘undamped’ case, that is, to
the harmonic approximation to bath dynamics. Here we make a
step forward and we explicitly introduce phonons dissipation by
modelling their spectral shape. Thus, G of each phonon assumes a
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Lorentzian shape with amplitude Da,

G oij;oa
� �

¼ Da�na
D2
a þ oij �oa

� �2 þ Da �na þ 1ð Þ
D2
a þ oij þoa

� �2 ; ð4Þ

where �na¼ 1
eb‘oa � 1 is the mean phonon occupation number and

b¼ 1/kBT. Note that the lifetime of the a-th mode is ta¼:/Da.
The inset of Fig. 1c schematically illustrates the typical

temperature dependence of Da, which takes a small constant
value for ToT* and then becomes linear above the thre-
shold temperature, T* (refs 15–17). The spin dynamics then
qualitatively depends on the value of U0 with respect to kBT*
(see Fig. 1c). For U0 � kBT*, the phonons have a long lifetime
(Da is small) over the entire temperature range in which the spin
dynamics is usually measured (kBToU0). Therefore, at
any relevant temperature, spin relaxation takes place through
the standard Orbach’s mechanism for harmonic phonons, with
t following an Arrhenius-like activated temperature dependence
and Ueff¼U0. This is a frequent situation found in low-aniso-
tropy SMMs, where indeed the first excitation energy can be
associated with the effective barrier for relaxation. In contrast, for
U04kBT*, the temperature dependence of Da becomes important.
At high temperature, there are significant deviations from a
single-exponent Arrhenius behaviour, which can no longer
describe relaxation across the entire temperature range. Impor-
tantly, if one insists in fitting the experimentally measured
relaxation curve at high temperature with an Arrhenius plot, an
effective barrier significantly lower than U0 will be estimated
(see Fig. 1c, for U0 � kBT*). This situation becomes relevant for
SMMs with high anisotropy and already explains why one often
measures Ueff � U0.

S¼ 1 embedded in a stochastic anharmonic phonons bath.
A simple S¼ 1 model will help us in discussing the microscopic
mechanism behind spin relaxation in the presence of inelastic
phonons. Since calculating Da would require an out-of-reach
molecular dynamics simulations (from several ps to ns) for a
crystal containing hundreds of atoms, we have taken here a
stochastic approach. According to Kubo’s model18, the phonons
line-shape corresponds to the amplitude of the Gaussian
probability distribution of the a-mode’s energy fluctuations. In

the canonical ensemble (NVT), this quantity is evaluated as

D2
a¼

@ Ha
ph

D E
NVT

@b
¼ ‘oað Þ2eb‘oa

eb‘oa � 1ð Þ2
; ð5Þ

with Ha
ph¼‘oa n̂a þ 1=2ð Þ. Such temperature dependence

of D2
a is in qualitative agreement with both the experimental

and theoretical homogeneous linewidth temperature beha-
viour15,17,19. This choice of D corresponds to the case where
the phonons rapidly become over damped as T increases and it
can be considered as opposite to the harmonic limit.

Consider now the three-level system of Fig. 1b, where the states
|0i, |1i and |2i are, respectively, the ground state, its spin-reversed
state and the excited state. The degeneracy between |0i and |1i is
assumed to be slightly lifted for instance by a magnetic field.
Assume also that there is only one phonon of frequency o that
can couple to the spin transition i-j with strength Vij. Such
phonon is then coupled anharmonically to a phonon’s bath so to
acquire a finite linewidth D. Note that this model applies to the
S¼ 1 case and also to any situation with a low-energy-lying
almost degenerate doublet separated by an excited state. If one
solves equation (3) for the three-level system in the harmonic
limit (D-0) (see Supplementary Note 2), the relaxation time will
be t¼t0eb‘od‘o;U0¼ 1=V02ð Þeb‘od‘o;U0 , that is, relaxation will
proceed through an Arrhenius behaviour with Ueff¼U0 and a
pre-exponential factor inversely proportional to the spin–phonon
coupling coefficient V. Importantly, in this limit one requires the
phonon to be resonant at the excitation energy U0. Note that the
same situation holds true for small U0 and U0 � kBT , that is,
when T is sufficiently low that D is practically temperature
independent (ToT*).

In contrast, for an anharmonic phonon with linewidth
described by equation (5), the relaxation time for :o4kBT is
calculated as in equation (38) of Supplementary Note 2:

t¼‘o
V02

e
b‘o
2 þ U0 � ‘oð Þ2

ð‘oÞ2
e
3
2b‘o


 �
: ð6Þ

As expected, there is no relaxation, t-N, if the spin–phonon
coupling vanishes, since no other mechanism is considered here
(for example, quantum tunnelling). A much more surprising fact
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Figure 1 | Phonon-induced spin relaxation for an S¼ 1 system. (a) Displays a Lorentzian and a Dirac-like phonons’ density of states. The spin energy

barrier profile is pictured in b, where the ground state of energy E0 is separated from the spin-flip state of energy E1 by a barrier U0¼ E2� E0. The spin

relaxation occurs by exciting the spin system to the state of energy E2 via absorption of a phonon. In the standard Orbach’s process, the phonon is resonant

with the spin excitation energy and its spectral function, A(E), is a d-function (black bar in a). In contrast, when one considers a finite phonon lifetime (red

curve in a), the phonon does not need to be resonant with the spin levels. In c, we report the logarithm of the relaxation time t against the temperature T

scaled by the excitation energy U0/kB. The inset reports the qualitative behaviour of the phonon linewidth, D, as function of the temperature, where T*

represents the temperature above which the anharmonic effects start to be important. The black symbols describe the Arrhenius behaviour expected from

the standard Orbach process, while the solid lines represent the expected behaviour for anharmonic crystals in three different regimes.
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is that, for V02a0, the relaxation time follows an activated
temperature dependence, but the effective barrier is uniquely
determined by the phonon frequency. In particular, when the
phonon is resonant with the spin level, we find t¼U0=V02e

U0
2kBT ,

meaning that relaxation follows an Arrhenius behaviour with the
effective barrier being half of the excitation energy Ueff¼U0/2.
Note that the harmonic picture cannot be recovered from
equation (6), due to the assumptions made in its derivation
(see Supplementary Note 2). However, in this case of anharmonic
phonons, and in stark contrast with the harmonic case often
discussed in literature13,20,21, the resonance between the phonon
energy and the splitting of the spin levels is not a necessary
condition for the relaxation, which can take place even off
resonance with the more complex temperature dependence
described by equation (6).

The same off-resonance mechanism described above applies
to any other spin transition. For instance, see Supple-
mentary equation (29) and Supplementary equation (30) of
Supplementary Note 2. If V02¼ 0, relaxation can still take place
by a phonon-induced off-resonant transition between |0i and |1i.
This gives a relaxation time

t¼‘o
V01

e
b‘o
2 ; ð7Þ

which again depends on the phonon frequency alone. Note,
however, that such ‘direct’ relaxation mechanism, at variance with
the Orbach’s one, is usually observed at very low temperature
where the condition T4T* is hardly achievable and a closer
agreement with the harmonic scenario is therefore expected.
Clearly, if both V01 and V02 do not vanish, there will be
competition between the different relaxation channels and in
general t will take a more complex form. Yet, our analysis clearly
demonstrates that in addition to the anisotropy barrier, also the
phonon frequency and the phonon lifetime become a relevant
energy scale of the problem. In some cases, it is the dominant one.
Our mechanism goes beyond previous attempts at explaining the
sub-barrier relaxation measured in some SMMs22–24, where a
phenomenologically finite linewidth was added to the spin excited
state energy levels. Such early approaches, in fact, although able to
explain UeffoU0, fail in relating the spin relaxation process
to a physically sound dissipation mechanism. Furthermore, large
barrier reductions require massive linewidths, in stark contrast to
those measured spectroscopically. Indeed, a typical experimental
electron paramagnetic resonance linewidth for SMMs is of the
order of 1 cm� 1 or less25.

It should be stressed that the effects due to the phonon
linewidth broadening induced by the phonon–phonon interac-
tions are effective regardless the nature of the density of states of
the lattice vibrations. Indeed, even a single phonon interacting
with the spin is sufficient to induce a reduction of Ueff. However,
the broadening of the phonons’ spectral shape also enables more
phonons, close in energy, to be operative at the same time,
making the vibrational density of states another important figure
of merit for the interpretation of the spin dynamics.

Ab initio spin dynamics. A full quantitative analysis of our
mechanism now requires the calculation of the phonon spectrum
and the spin–phonon coupling for all possible modes and all
possible spin transitions. We then abandon simple models for an
ab initio description, and investigate the magnetization dynamics
of the SMM [(tpaPh)Fe]� (ref. 25). This SMM exhibits a S¼ 2
ground state with large uniaxial anisotropy (see Fig. 2a) and
shows slow relaxation rates in an external applied magnetic
field25. This specific SMM has been chosen due to its well
experimentally characterized structural and magnetic properties.

The relaxation features showed by [(tpaPh)Fe]� are rather general
and, given the large magnetic anisotropy (D¼ � 27.5 cm� 1

(ref. 25)), they readily translate to most appealing single ion
SMMs, comprising either a transition metal or a lanthanide ion.
Moreover, this SMM has one of the most compact unit cell in the
SMMs family, which makes it easier the implementation of our
demanding computational framework. The [(tpaPh)Fe]� crystal
has P�1 symmetry and the unit cell contains two SMMs and two
Naþ cations, coordinated by three dimethoxyethanes. Since
[(tpaPh)Fe]� possesses an orbital non-degenerate ground state,
we can separate the electronic and pure spin degrees of freedom,
and describe it with an effective spin Hamiltonian, ĤS¼

P
ij DijŜiŜj,

where Ŝi is a cartesian component of the spin operator26. We
simulate the [(tpaPh)Fe]� spectrum with the multi-determinant
wave-function active space SCF scheme (CASSCF)27,28. The
2Sþ 1¼ 5 lowest-lying S¼ 2 CASSCF energy roots have been
used to fit the spin Hamiltonian ĤS, as provided by the Orca
package (see ‘Methods’ section, and Supplementary Note 4 for a
discussion on the validity of the spin Hamiltonian approach). The
resulting energy ladder is reported in Fig. 2b, where a 1500Oe
external magnetic field has been introduced through a Zeeman

term Ĥ¼geb~B � ~̂S (geb is the gyromagnetic ratio). The external field
is here introduced merely to be consistent with experimental
conditions, optimized to reduce tunnelling relaxation, particularly
efficient in zero field. All the matrix elements derivatives
that appear in equation (3) can be written in terms of ĤS (see

E (cm–1)
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93
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2 1 0 –1 –2 < Sz >

a

b

Figure 2 | The S¼2 [(tpaPh)Fe]� SMM. In a, we show the optimized

molecular structure and in b the corresponding energy diagram. Atoms

colour code: Fe¼ pink, N¼ blue, C¼ green and H¼white. The red arrow

lying along the pseudo C3 molecular symmetry axis shows the

magnetization easy axis direction. The energy diagram presents five spin

states and it has been calculated with the molecule orientated with its easy

axis along the external magnetic field. The first four states are only slightly

non-degenerate (B0.5–1 cm� 1) and their energy difference could not be

appreciated in the figure. The green arrow represents the direct relaxation

pathway and the blue arrow represents the Orbach’s relaxation mechanism.
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Supplementary Note 3) as

X
a

Sbh j @Ĥ0

@q̂a
Saj i¼

X
a

X
ij

@Dij

@q̂a
Sbh jŜiŜj Saj i; ð8Þ

where |Sni is an eigenstate of ĤS. The right-hand side expression in
equation (8) makes it possible to implement spin–phonon coupling
calculations through numerical differentiation of the spin
Hamiltonian coefficients Dij, which in turn are calculated by
CASSCF method.

All the spin–phonon models employed to date to study the
dynamics of SMMs collapse the phonon spectrum in a single
mode (the Debye model) so to obtain an handy relation for the
relaxation time1, and only recently the validity of this appro-
ximation has been discussed29. Here the Debye assumption is no
longer required as all spin–phonon coupling coefficients are
calculated, meaning that all the potential spin relaxation channels
are taken into account. The only limitation in our case is practical
and it is dictated by the size of the system that we can simulate.
We consider a periodic crystal and calculate only the unit cell
gamma-point normal modes. These consist of all short
wavelength intra-molecular modes and the limited number of
inter-molecular ones compatible with having two molecules per
unit cell.

Next, we solve the master equation, equation (3), in time for
different temperatures, finding an exponential decay of the
magnetization at any T. The relaxation time is then extracted by
fitting the time evolution of the magnetization component
parallel to the external magnetic field with the function Mz(t)¼
(Mz(0)�Mz(N))e� t/tþMz(N). The results of our calculations
are reported as black dots in Fig. 3, where we present the
logarithm of t as a function of the inverse temperature 1/T.

Clearly, there is no single exponential dependence of t over the
entire temperature range, indicating that non-resonant spin–
phonon relaxation channels contribute to the dynamics, as
discussed for the simple S¼ 1 case. In particular, we notice that
ln(t) is approximately linear with 1/T for To5K (1/T40.2) and
then displays a strong deviation. The linear slope extracted for
To5K gives us Ueff¼ 19.7 cm� 1, which is in excellent agreement
with the experimental value, Ueff¼ 26 cm� 1, measured in a
similar temperature range25. Notably, such value is much smaller
than our calculated excitation energy of 94 cm� 1 (corresponding
to the first excited two-fold degenerate state with Ŝz

� 

¼ � 1, see

Fig. 2b), demonstrating that phonon-induced under-barrier
relaxation can drastically reduce the spin lifetime of a SMM.

To isolate the dominant relaxation mechanism at different
temperatures, we perform the same exercise done for the simple
S¼ 1 model, namely we solve the master equation first by
retaining only the transitions between the almost degenerate
ground state doublet (blue curve in Fig. 3), and then by neglecting
these and considering only the remaining ones. For To5K non-
resonant intra-doublet transitions dominate completely the
dynamics and provide the largest contribution to t. An Arrhenius
fit of the blue curve essentially returns the same value, Ueff¼ 19.7
cm� 1, obtained when fitting the complete one for To5K.
Although several phonon modes may contribute to t, we observe
that Ueff¼ 19.7 cm� 1 is remarkably close to half of the energy of
the lowest phonon mode (B36 cm� 1). This makes us concluding
that the low-T relaxation of [(tpaPh)Fe]� is dominated by direct
doublet transitions via the lowest phonon mode.

In contrast, when only phonon-activated transitions through
the excited states are considered, we obtain the red curve of Fig. 2,
which follows closely the complete curve in the intermediate
range 5KoTo10K and can be fitted with an Arrhenius plot and
Ueff¼ 55.7 cm� 1. Thus, in this intermediate T range, the
relaxation is driven by non-resonant phonon-activated processes.
These contribute to the barrier with 3

2:o, again suggesting
that it is the :o¼ 36 cm� 1 mode to dominate the dynamics.
This normal mode of vibration is complex in nature being a
delocalized representation of a large number of unit cell degrees
of freedom. Finally, when the temperature is further enhanced
(this is a regime never investigated experimentally since the ts are
too short) several modes participates to the dynamics and a single
Arrhenius fit is no longer possible. A numerical demonstration of
such multi-mode relaxation process is provided in the inset of
Fig. 3 where we show calculations including all the transitions
and an increasingly large number of phonon modes. Notably the
relaxation times get smaller as more modes are available, meaning
that more activated relaxation channels become possible.

Discussion
Finally, let us now critically discuss the results just obtained. In
general, we expect the physics shown here for [(tpaPh)Fe]� to be
quite common in high-anisotropy SMMs. The most recurrent
experimental observation is that of a single-exponent Arrhenius-
like relaxation, with an activation barrier significantly smaller
than that expected from the molecule excitation spectrum. Here
we have clearly shown that identifying Ueff with U0 is no longer
justified, since Ueff is also determined by the specific molecule
phonon structure and by the spin–phonons coupling. In fact, we
have demonstrated that off-resonance phonon modes always
contribute to lower Ueff with respect to U0, as observed
experimentally.

Intriguingly, in literature there are also reports of SMMs
displaying different relaxation regimes at different temperatures.
For instance, the low-T relaxation time of Dy3þ is defined by a
double-exponent Arrhenius curve with the two fitted effective
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Figure 3 | [(tpaPh)Fe]� ab initio spin dynamics results. Calculated

temperature dependence of the relaxation time, t. Black dots are for

simulations where all the relaxation processes are considered. The green

triangles and the green line represent the experimental results as taken

from ref. 25. The blue and red lines represent calculations performed,

respectively, by considering only transitions between the quasi-degenerate

doublet, and by completely neglecting them (that is, by considering only

relaxation processes activated through the excited states). Arrhenius’s fits

performed for the To5K and for 5 KoTo10 K cases return effective

barriers of 19.7 cm� 1 and 55.7 cm� 1, respectively. In the inset, we show the

relaxation time in the high-T range calculated using only a limited number of

phonon modes when all the relaxation processes are included. The red line

with squares describes the simulation done with only five modes, the blue

line with diamonds corresponds to the simulation done with 15 modes and

the black line with dots corresponds to the full-phonon spectra case.
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barriers (334 and 94K) being lower than the first accessible spin
exited state (430K)30. This behaviour suggests the existence of
two different spin relaxation mechanisms which, in light of our
discussion, could be attributed to the effect of different normal
modes. In fact, we believe that the most common situation is the
one presented here, namely the one in which the relaxation time
can be associated to different barriers at different temperatures. In
experiments, the temperature range is usually narrow, so that a
single-exponent Arrhenius behaviour is often observed. Notably
under-barrier relaxation has been recently explained on the basis
of a second-order Raman effect9,31,32, but here we clearly show
that one does not necessarily need to claim second-order effects
to re-conciliate theory with experiments.

Besides the temperature-dependent component, the magni-
tude of t is also defined by a pre-exponential coefficient
(see equation (6)), t0, which in turn depends on the matrix
elements of the spin–phonon coupling Hamiltonian and the
actual phonon frequencies. This complex dependence over the
system details makes it difficult to predict the relaxation time on
the sole basis of the molecule excitation spectrum and indeed calls
for a more complete treatment, going also beyond the Debye
model29,33. Nevertheless, a few general designing rules for
increasing Ueff may be provided by our analysis. For instance,
the direct relaxation between the two quasi-degenerate ground
states can be slowed down by either increasing the smallest
phonon frequency and by reducing the spin–phonon coupling
coefficients. The first strategy translates in designing more
structurally rigid SMMs, while the second one is readily
accomplished with the usual quantum tunnelling reduction
methods such as by employing highly axial symmetry Kramer
ions.

At high temperature, the goal is instead that of quenching the
Orbach’s mechanism. Although complicated to exploit, a possible
strategy may be that of modulating the spin excited state energy
to obtain a non-resonant condition with the phonon spectrum. In
this context, interesting solutions may be offered by 3D and on
surface 2D crystal engineering techniques34,35. However, the
selective engineering of the spin–phonon coupling coefficients
could be the most effective way to slow down the Orbach’s
relaxation rate and more detailed studies will be needed. Our
finding are in line with the recent research trend that see the
engineering of SMM/phonon spectra as a major challenge for the
design of the next-generation magnetic molecular
materials9,32,36–38. Here we have shown that the vibrational
features of SMMs are the central figures of merit in the design of
new systems. Indeed, frequency magnitude and lifetime of
phonons, along with the spin–phonon coupling coefficients, are
all quantities that directly enter in the spin equation of motions
and strongly affect the relaxation timescales.

In conclusion, we have here recast the basic concepts of spin–
phonon relaxation in a fully quantum mechanical formalism.
This eliminates previously adopted approximations aiming at
simplifying the problem and provides a general theoretical
framework amenable to ab initiomethods. Our approach requires
the calculation of the full-phonon spectrum, the spin Hamilto-
nian and the spin–phonon coupling, all quantities that enter a
master equation for the spin dynamics. We have shown that the
phonons dissipation, treated here at a stochastic level, enables off-
resonance spin relaxation, whose magnitude and temperature
dependence are determined by the electronic and vibrational
details of the specific SMM. A fully quantitative analysis
for [(tpaPh)Fe]� demonstrates that the relaxation time has a
complex temperature behaviour, where different relaxation
mechanisms dominate over different energy ranges. Our work
suggests several designing strategies for reducing the spin
relaxation and thus for engineering long-living SMMs.

Furthermore, we remark that spin–phonon interaction is
common to any magnetic material and the theory outlined here
does not apply just to SMMs. Moreover, as other classes of
magnets show a long magnetization lifetime, it is possible to
speculate that they could also be affected by similar spin-bath
dynamical features as those reported here.

Methods
Density functional theory calculations. All the structural optimization and
Hessian calculations have been performed with the CP2K software39 at the level of
density functional theory with the Perdew-Burke-Ernzerhof (PBE) functional
including Grimme’s D3 van der Waals corrections40,41. Other dispersion forces
correction schemes have been tested and compared with each other in describing
the unit cell structure. Among the available df-D, df-D2, rvv10 and D3 methods,
Grimme’s one has been found to be the most accurate42. A double-zeta polarized
MOLOPT basis set and a 600 Ry of plane-wave cutoff have been used for all the
atomic species. The same set-up has been used to evaluate the G-point phonons of
the entire periodic unit cell. A finite differences algorithm for the evaluation of the
Hessian matrix with a 0.001 a.u. differentiation step has been used.

Ab initio magnetic properties calculations. The ORCA software43 has been
employed for computing of all the magnetic properties. Calculations of the D
anisotropy tensor have been performed at the CASSCF level with a def2-TZVP
basis set for Fe and N, def2-SVP for C and H and a def2-TZVP/C auxiliary basis set
for all the elements. This choice has been carefully tested and it correctly
reproduces both spin–orbit corrected spectra and the D derivatives calculated by
employing the def2-TZVP basis set for all the atomic species. A (6,5) active space
have been chosen as recommended in literature and the spin–orbit contribution
has been included through quasi-degenerate perturbation theory. Although
CASSCF calculations could be done only on isolated molecules, we take into
account electrostatic effects by embedding the single [(tpaPh)Fe]� molecule in a
21� 21� 21 lattice of RESP point charges44 mimicking the periodicity of the
crystal. Although the crystal is made of charged molecules, its P�1 imposes a
quenching of the electrostatic fields and indeed the inclusion of the point charges
does not produce any sizable effect.

Ab initio mapping of the spin Hamiltonian. Due to the presence of low-lying
excited electronic states, the spin Hamiltonian formalism is here only partially
correct and it could not exactly fit the entire lower-lying spectrum. Other
parameterizations have been tested, including for instance the fourth-order Ô4q

operators in the fit, but, although the agreement with the CASSCF results improve
(RSS passes from 689 to 6.0� 10� 9), it does not change the results that we have
discussed. To evaluate all the Va

ab coefficients in equation (3), we numerically
derived the D anisotropy tensor by modulating the equilibrium molecular structure
of one [(tpaPh)Fe]� molecule along all normal modes by ±0.2 units.

Data availability. All the relevant data discussed in the present paper are available
from the authors on request.
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