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Artificial control of the bias-voltage dependence
of tunnelling-anisotropic magnetoresistance using
quantization in a single-crystal ferromagnet

Iriya Muneta"®, Toshiki Kanaki!, Shinobu Ohya'? & Masaaki Tanaka'?

A major issue in the development of spintronic memory devices is the reduction of the power
consumption for the magnetization reversal. For this purpose, the artificial control of the
magnetic anisotropy of ferromagnetic materials is of great importance. Here, we demonstrate
the control of the carrier-energy dependence of the magnetic anisotropy of the density of
states (DOS) using the quantum size effect in a single-crystal ferromagnetic material,
GaMnAs. We show that the mainly twofold symmetry of the magnetic anisotropy of DOS,
which is attributed to the impurity band, is changed to a fourfold symmetry by enhancing the
quantum size effect in the valence band of the GaMnAs quantum wells. By combination with
the gate electric-field control technique, our concept of the usage of the quantum size effect
for the control of the magnetism will pave the way for the ultra-low-power manipulation
of magnetization in future spintronic devices.
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he control of the magnetic anisotropy'~ is a particularly

crucial issue for the reduction of the power required for the

magnetization reversal that will enable the exploitation of
the full potential of the spintronic memory and logic devices, such
as magnetic tunnel junctions®'> and spin transistors!>14,
that may outperform the CMOS circuits commonly used in
existing computers. Meanwhile, band engineering is a useful
technique to manipulate the electronic structures of materials
and heterostructures using an electric field'®, the quantum
size effect!®!” and modulation doping!®!®, and it is a well-
established and important technology for the design of electronic
devices based on semiconductors. For example, by designing
quantum well structures, we can completely control the quantized
energy levels or two-dimensional sub-band structures of materials
as calculated using band engineering. Although band engineering
was developed mainly for semiconductor electronics, it could
potentially be extended to magnetism because electron spins
and their motions are coupled by spin-orbit interactions.
However, this point of view of the usage of band engineering
is lacking!~720=2%, and there are a wide variety of possibilities
for band engineering to design or control magnetic materials
and devices.

Here, we demonstrate the artificial control of the carrier energy
dependence of the magnetic anisotropy of the density of states
(DOS) for the first time by designing quantum well structures
consisting of a single-crystal ferromagnetic thin film and
semiconductor barriers and tuning the strength of the quantum
size effect. We use the prototypical ferromagnetic semiconductor
GaMnAs that has a band structure in which the energy regions of
the valence band (VB) and impurity band (IB) overlap26. We find
that the magnetic anisotropy of the DOS varies depending on the
energy of the carriers. This phenomenon has never been reported
in any ferromagnetic materials. Furthermore, we reveal that the
relative strength of the magnetic anisotropy between the VB and
IB, which have fourfold and twofold symmetries in the film plane,
respectively, can be varied by controlling the strength of the
quantum size effect induced in the VB (Fig. 1). These new
findings suggest that band engineering provides the possibility of
artificially designing magnetic anisotropy by controlling the
electronic structures of magnetic materials. By combining this
technique with the recently developed gate electric-field control
technique of the carrier density and magnetization, our results
will lead to ultra-low-power manipulation of magnetization in
future spintronic devices.

Results

Samples. We use a tunnel heterostructure consisting of
GagosMngosAs (25nm, Curie temperature Tc: 134 K)/AlAs
(5nm)/GaAs:Be (100 nm, hole concentration p =7 x 1018 cm—3)
grown on a p " -GaAs (001) substrate by molecular beam epitaxy
(MBE) (see Fig. 2a). We carefully etch a part of the GaMnAs layer
from the surface and fabricate three tunnel diode devices with a
diameter of 200pum on the same wafer?’>?® with different
GaMnAs thicknesses, d: 22nm (device A), 16 nm (device B)
and 9 nm (device C). In the GaMnAs layer, holes are confined by
the AlAs barrier and the thin depletion layer (~1nm) formed at
the surface of the GaMnAs layer?”28, and thus the VB energy
levels in the GaMnAs layer are quantized. As shown in Fig. 2b, we
measure the current-voltage (I-V) characteristics at 3.5K with a
strong magnetic field uo|H| =890 mT applied at an angle ¢ from
the [100] direction in the plane so that the magnetization M
becomes parallel to H, where p, is the vacuum permeability (see
Supplementary Note 1 and Supplementary Fig. 1 for the relation
between the directions of H and M). We ground the backside of
the substrate and apply a bias voltage V to the Au top electrode.
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Figure 1 | Schematic valence band diagram representing our findings.
The mainly twofold symmetry of the magnetic anisotropy of the density of
states (DOS), which is attributed to the impurity band, is changed to a
fourfold symmetry by enhancing the quantum size effect in the valence
band in GaMnAs. (a) The sample structure examined here is an
Au/GaMnAs (22, 16 and 9 nm) quantum well/AlAs (5 nm)/p-GaAs:Be
(100 nm)/p T -GaAs (001) substrate, from the top surface to the bottom.
The yellow, pink, green and blue regions correspond to the Au, GaMnAs,
AlAs and GaAs:Be layers, respectively. The red dash-dotted line and black
solid curve represent the Fermi level and top energy of the valence band E,
of each layer, respectively. Three blue horizontal plates represent the
quantum levels of the GaMnAs valence band. The twofold symmetry (red)
and fourfold symmetry (light blue and green) represent the polar plots of
the magnetic field direction dependence of the ADOS of the impurity band
and quantized valence band, respectively. Here, ADOS is the change in the
DOS from the minimum and the azimuth is the in-plane magnetization
direction angle ¢ of the GaMnAs layer. These are based on the polar plots
of the dl/dV-¢ curves shown in Fig. 4c,i. At the on-resonant states (blue
plates), the phase of the fourfold symmetry (light blue) is opposite to that
at the off-resonant states (green). The twofold symmetry, which dominates
the entire energy region, is changed to fourfold symmetry as the GaMnAs
quantum well thickness is decreased and the quantum size effect is
enhanced. (b) Magnetic field direction dependence of DOS in the (001)
plane. The curves filled with blue and green represent the fourfold
symmetries corresponding to the valence band on-resonance and off-
resonance, respectively. The red-filled curve represents the twofold
symmetry corresponding to the impurity band.

In this manner, we measure the magnetization direction
dependence of the tunnel conductance at various values
of V¥732_ For these measurements, we vary V and ¢ at
intervals of 2mV and 5°, respectively. As shown in Fig. 2c,
when a negative V is applied, holes tunnel from the GaAs:Be layer
to the GaMnAs layer. Because dI/dV is proportional to the DOS
at the energy where tunnelling occurs, the energy dependence of
the DOS below the Fermi level Er of the GaMnAs layer is detected
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in negative V. When V is positive, holes tunnel from the GaMnAs
layer to the GaAs:Be layer, and thus dI/dV is proportional to the
DOS at Ep of GaMnAs regardless of V (see Fig. 2d). Our
measurements provide the ¢ dependence of the DOS at various
energies below Er in GaMnAs.

Analysis. The dI/dV-V characteristics obtained for devices A-C
at ¢ =0° show different oscillatory behaviour (see Fig. 3a); the
oscillation becomes stronger as d decreases. Also, the V values of
the dI/dV peaks systematically change by changing d, indicating
that these oscillations originate from the resonant tunnelling

effect’®3* induced by the quantum size effect in the VB of
the GaMnAs layer?”>3>-38, (See Supplementary Fig. 3 for the I-V/
characteristics of devices A-C. More systematic data of the
d?[/dV2-V characteristics of tunnelling devices with various
GaMnAs thicknesses (d=7.3-23.6nm) are described in
Supplementary Note 3 and Supplementary Fig. 4.) The
oscillation amplitude of dI/dV decreases by changing ¢ from
0° (along [100]) to 45° (along [110]) or 135° (along [110])
(see Fig. 3b). The peak (blue arrow) value of dI/dV when ¢ = 0° is
larger than that when ¢ =45° or 135°, whereas the dip
(green arrow) value of dI/dV when ¢ =0° is smaller than that
when ¢ =45° or 135°. This feature can be seen in Fig. 3¢ as the
opposite sign of the oscillation of dI/dV as a function of
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Figure 2 | Overview of our measurements of the anisotropy.

(a) Schematic cross-sectional structure of devices A-C used in this study.
From the top surface to the bottom, an Au/GaMnAs (22, 16 and 9 nm,
Tc =134 K) quantum well/AlAs (5nm)/p-GaAs:Be (100 nm,

p=7 %108 cm~3) heterostructure is fabricated on a pT-GaAs (001)
substrate. The bias voltage V is applied between the Au electrode and
backside of the substrate. (b) Schematic view representing the directions of
the magnetization M (red arrow) of the GaMnAs layer and of the magnetic
field uo|H| =890 mT (grey arrow) applied in our measurements.

(c,d) Schematic valence band (VB) diagrams of the tunnel devices when
negative (¢) and positive (d) V are applied. The black solid and red
dash-dotted lines represent the top of the VB and the quasi Fermi levels Ef,
respectively. The blue dash lines represent the quantized VB levels in the
GaMnAs layer. These quantum levels are formed because the VB holes are
confined by the surface Schottky barrier (~1nm) and AlAs layer?’:28, The
grey, blue and pink regions represent the band gap, VB and impurity band
(IB), respectively. The red arrow represents the tunnel direction of the holes
when V is applied. The character g represents the elementary charge.

(100)), c£“°] (twofold along [110]) and CLOIO] (twofold along
[010]) of the normalized dI/dV-¢ curves by fitting the following
equation to the experimental normalized dI/dV-¢ curves:

(Normalized dI/dV) = C4 cos4¢ + CQIO] cos2(¢p —45°)

I Cgom]

)
cos2(p —90°)+1
Th [110] [010] R

e V dependences of Cy, C, " and C; ' show oscillations that
synchronize with the oscillations of the dI/dV-V curves that are
induced by the resonant tunnelling (see Fig. 5). C, is significantly
enhanced as d is decreased and the oscillation of dI/dV-V
is enhanced. Therefore, the oscillatory behaviour of the
V dependence of the symmetry components is attributed to the
quantization of the VB states.

We discuss the origin of the fourfold symmetry of the dI/dV-¢
curves induced by the quantum size effect in the VB of GaMnAs.
Our results mean that the strength of the quantization depends
on ¢ as shown in Fig. 3b; in other words, the coherence length of
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Figure 3 | Measurement results of the tunnel transport in devices A-C. (a) Comparison of dl/dV-V curves measured on different devices when the
magnetic field direction ¢ is 0°. (b) Comparison of three dl/dV-V characteristics at different ¢. The arrows indicate the V values used in c. (¢) The ¢
dependence of dI/dV in device C when V is fixed at —0.13V (blue), —0.118V (red) and — 0.166 V (green), corresponding to the arrows shown in b.
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Figure 4 | Measurement results of the magnetization-direction dependence of the tunnel transport in devices A-C. (a,d,g) Colour-coded maps
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The black solid curves are the fitting curves expressed by equation (2).
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the VB holes depends on ¢. In GaMnAs, there is a weak
interaction between the VB holes and Mn spin magnetic
moments, indicating that the coherence length of the VB holes
depends on the strength of this interaction. Thus, the fourfold
symmetry of the magnetic anisotropy originates from the
anisotropy of the wave function of the VB holes that are mainly
composed of As 4p orbitals located at the lattice points having a
fourfold symmetry in the film plane. This shows that the
interaction between the spins and orbitals reflects the anisotropy
of the wave function distribution and the direction of spins. We
calculated the DOS of the VB that is weakly interacting with the
magnetic moments of Mn, using the k- p Hamiltonian and p-d
exchange Hamiltonian, and confirmed that the DOS versus ¢
characteristic shows the fourfold symmetry (see Supplementary
Note 4 and Supplementary Fig. 5).

4

Magnetic anisotropy of the IB. In the region of V= —0.07 V-
+0.1V of the colour-coded maps shown in Fig. 4a,d,g, the
normalized dI/dV as a function of ¢ and V is similar in devices
A-C, meaning that it is insensitive to the change in d, and thus
the twofold symmetry along [110] observed in this region is
attributed to the IB. This insensitivity to d agrees with the pre-
vious report> that the magnetic anisotropy of magnetization in
GaMnAs films at low temperature is independent of d. In the
region of V>0V, the ¢ dependence of the normalized dI/dV
does not depend on V because it always reflects the DOS at Eg in
GaMnAs regardless of V. The twofold symmetry along [110] is
also observed in the region of V< —0.07V for device A
(d=22nm, Fig. 4a), in which the effect of the quantization of
the VB holes is small. This indicates that the ¢ dependence of the
tunnelling transport is dominated by the IB holes in the entire
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region of V when the quantization of the VB holes is weak.
However, as the quantization becomes stronger, the fourfold
symmetry originating from the VB emerges in the IB region,
meaning that the IB and VB overlap (Fig. 4b,e,h). This finding is
consistent with recent angle-resolved photoemission spectroscopy
measurements of GaMnAs®.

As shown in Fig. 4b, we can classify the region of V<0V
(corresponding to the DOS below Er in GaMnAs) into
three parts, from top to bottom: 0V-—0.03V (region X),
—0.03V-—0.27V (region Y) and —0.27V-— 0.3V (region Z).
In regions X and Z, the DOS when M is along [110] and [110] is
larger than when M is along [110] and [110], whereas it is smaller
in region Y. We discuss the origin of this sign change of the
¢ dependence of the DOS of the IB depending on the energy.
A single Mn atom doped into GaAs forms an impurity state
because of the inter-atomic interaction (hybridization) between
the Mn 3d orbitals and the As 4p orbitals. Tang and Flatté
predicted that the hybridization and spin-orbit interaction in the
As 4p orbitals result in an antiparallel condition between the spin
angular momentum of the Mn 3d spins and the orbital angular
momentum of the hole in the impurity state. Because of this
condition, the wave function of the hole in the impurity state
favours extension in the direction perpendicular to the Mn
3d spins, and thus the distribution of the wave function depends
on the direction of the Mn 3d spins. This behaviour is well
reproduced by a tight binding method (see Supplementary Note 5
and Supplementary Fig. 6). Figure 6a,b schematically illustrates
the distributions of the wave functions of the two impurity states
o and f originating from the two neighbouring Mn atoms A and
B located along [110], respectively. Here, we consider the cases in
which M is aligned in the [110] direction (Fig. 6a) and in the
[110] direction (Fig. 6b), in which the wave functions tend
to extend in the [110] and [110] directions, respectively (the
calculated results are shown in Supplementary Fig. 6). As shown
in Fig. 6cd, the hybridization between the Mn 3d
(red lines) and As 4p (blue lines) orbitals forms o (yellow line)
and f (purple line) around Mn atoms A and B, respectively.
The bonding (green line) and antibonding (orange line)
impurity states are formed by the wavefunction overlap
between o and f, the origin of the IB*'*2. As indicated in
Fig. 6a,b, the wavefunction overlap between o and f is larger
when M]||[110] than that when M]|[110]. Thus, the energy
separation A between the bonding and antibonding states when
M]|[110] is larger (Fig. 6¢) than that when M||[110] (Fig. 6d). The
energy regions X-Z indicated in Fig. 6c,d correspond to the
regions of V shown in Fig. 4b. When M]|[110], the antibonding
and bonding states are formed in regions X and Z, respectively
(Fig. 6¢). When M]||[110], both antibonding and bonding states
are formed in region Y (Fig. 6d). Thus, the energy dependence of
the DOS of the IB differs depending on the M direction (that is,
[110] or [110]), as shown in Fig. 6e. In regions X and Z, the DOS
when M||[110] is larger than that when M||[110]. In region Y, the
DOS when M|[110] is larger than that when M||[110]. The same
scenario can be applied for the Mn atoms whose distance is larger
than that between the nearest Mn atoms. The twofold symmetry
along the [110] axis in the DOS versus ¢ characteristic is well
reproduced by a tight-binding calculation (see Supplementary
Note 5 and Supplementary Fig. 7).

Above, we considered only the case in which the Mn atoms are
located along [110]. Although there are several possible Mn
alignments in real GaMnAs, there are reasons that only the
interaction between the Mn atoms located along [110] is
important. The overlap between the wave functions of the
impurity states originating from the two Mn atoms located along
(110) is known to be larger than that from the Mn atoms along
other directions, such as (100) and (211)*'42, Furthermore, an
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Figure 6 | Diagrams of the electronic structures when the magnetization
direction is different. (a,b) Schematic three adjoining (001) planes of
GaMnAs: the upper As (As)), middle Ga (or Mn) and lower As (As))) planes
when the magnetization M direction ¢ is along the [110] (a) and [110] (b)
directions. The ellipses schematically represent the wave functions of the
impurity states o (yellow) and 8 (purple) originating from Mn A and B,
respectively. The arrows represent the spin magnetic moments of Mn A
and B. (¢,d) Schematic energy-level diagrams when M is along the [110] (¢)
and [110] (d) directions. In each graph, the left-most (right-most) lines
correspond to the 3d level (red) of Mn A (B) and its neighbouring As 4p
level (blue). The yellow and purple lines represent o and f3, respectively. The
wavefunction overlap between o and ff induces the bonding (green line) and
antibonding (orange line) states with energy separation A. The black lines
represent the localized states around Mn A and B formed by the
hybridization between the 3d and 4p orbitals. The wave functions of these
states overlap slightly, inducing the antibonding and bonding states with
small energy separation (grey lines). (e) Schematic DOS around the top of
the valence band (VB) in GaMnAs. The pink solid and dotted curves
represent the DOS of the impurity band (IB) when M is along [110] and
[1101, respectively. The blue solid curve represents the DOS of VB.

anisotropic distribution of Mn atoms along [110] in GaMnAs is
predicted®®. Slightly more Mn atoms are located along [110] than
along [110], and this is attributed to the direction of the Mn-As
bonds on the surface during the MBE growth. This is thought to
be the origin of the twofold symmetry along [110] of the dI/dV-¢
curves. Also, the anisotropic interaction between two Mn atoms
and the anisotropic distribution of the Mn atoms are thought to
be the reason that GaMnAs has magnetic anisotropy with the
in-plane twofold symmetry along [110].

cg“‘” is also slightly enhanced at the peaks and dips of the
resonant oscillation in dI/dV-V as d decreases (see Fig. 5),
indicating that the VB has a small twofold symmetry along [110].
The twofold symmetry of the VB is induced because the interaction
between the VB holes and Mn spin magnetic moments transmits
the anisotropy of the Mn distribution to the VB.
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Comparison. To verify that the fourfold symmetry of the mag-
netic anisotropy of DOS is induced by the quantization in the
GaMnAs quantum well (QW), we compare devices A-C with
device Z that consists of GaMnAs (25nm, Tc 116K)/AlAs
(6 nm)/GaAs:Be QW (15nm)/AlAs (6 nm)/GaAs:Be (100 nm)
grown on a pJr -GaAs (001) substrate (see Fig. 7a,b), in which the
ferromagnetic layer and the QW layer are separated and the
quantum size effect does not occur in the ferromagnetic layer.
The surface GaMnAs layer is thick enough to prevent the
quantum size effect in this layer. We perform the same mea-
surement on device Z. The obtained dI/dV-V characteristics
oscillate because of the quantum size effect in the nonmagnetic
GaAs:Be QW (see Fig. 7¢c). The V dependence of the normalized
dI/dV-¢ curves shown in Fig. 7e reflects the energy dependence
of the magnetic anisotropy of the DOS of the GaMnAs electrode
and exhibits an oscillatory behaviour that is attributed to the
oscillation of the dI/dV-V curves induced by the resonant tun-
nelling effect in the GaAs:Be QW (see Fig. 7f). Similar to devices
A-C, Cy C£“°] and C£°‘°] oscillate as a function of V, synchro-
nizing with the oscillation of dI/dV-V (Fig. 7c,d); however, the
symmetry of the ¢ dependence of the normalized dI/dV is mainly
twofold, reflecting the magnetic anisotropy of the GaMnAs top
electrode (see Fig. 7d,e,g), that offers a remarkable contrast to the
results of devices A-C that the quantum size effect in the
GaMnAs QW layer enhances C; (fourfold symmetry). This
contrast provides evidence that the magnetic anisotropy of the
DOS changes by enhancing the quantum size effect in the
GaMnAs QW in devices A-C. Between the different V values
indicated by the green and blue arrows in Fig. 7f, the symmetry of
the dI/dV-¢ curves shows an opposite sign (Fig. 7g) that is
induced by the small shift of the peak V of the dI/dV-V curves
(see Supplementary Note 2 and Supplementary Fig. 2 for details).

It should be noted that surface states, if any, may have different
anisotropy from the bulk or quantum well states. However, the
surface of GaMnAs is depleted and does not induce the carrier-
mediated ferromagnetism. This means that the surface does not
couple with the magnetization of the GaMnAs layer beneath the
surface. Thus, the DOS of the nonmagnetic surface does not
depend on the direction of the magnetization of the GaMnAs layer.

The magnetic anisotropy of magnetization in ferromagnetic
materials reflects that of the DOS at Ez*°. Our study indicates that
the magnetic anisotropy of DOS depends on the carrier energy
(applied voltage) and can be controlled by band engineering.
Combining our results with the electric-field gating technique to
tune the Eg position will provide a new method to manipulate the
magnetization direction by controlling the magnetic anisotropy with
an ultra-low power. This method will be useful for the development
of nonvolatile spin devices using magnetization in the future.

Methods

Sample preparation. We grew a GayosMngosAs (25 nm)/AlAs (5 nm)/GaAs:Be
(100 nm, p=7 x 10'8 cm ) tunnel heterostructure by MBE for the fabrication of
devices A-C. The GaAs:Be, AlAs and GaMnAs layers were grown at 550, 530 and
210 °C, respectively. We grew a Gag 94Mng gsAs (25 nm)/AlAs (6 nm)/GaAs:Be QW
(I5nm, p=1x 1012 cm ~3)/AlAs (6 nm)/GaAs:Be (100 nm, p=3x 1018 cm —3)
tunnel heterostructure for device Z. The GaAs:Be electrode, AlAs, GaAs:Be QW
and GaMnAs layers were grown at 570, 530, 400 and 210 °C, respectively. The
growth rates of GaAs, AlAs and GaMnAs were 500nmh ~ 1.

After the growth, we annealed the samples in air at 180 °C for 38 h for devices
A-C and 20h for device Z to improve the crystallinity and T¢ of the GaMnAs
layers*4~48. We estimated the T of the GaMnAs layers by measuring the magnetic
circular dichroism (MCD) on the samples and analysed the Arrott plots derived
from the MCD-po|H| curves at various temperatures. The estimated T is 134K for
devices A-C and 116K for device Z.

We fabricated tunnel diode devices on the wafer after growth. In our process,
we used chemical wet etching with an acid solution composed of phosphoric acid,
hydrogen peroxide and water. For devices A-C, we sank the wafer vertically into
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Figure 7 | Measurement results on device Z for comparison. (a) Schematic cross-sectional structure of device Z used in this study. From the top surface
to the bottom, an Au/Gag.94Mng oeAs (25 nm, Tc =116 K)/AlAs (6 nm)/GaAs:Be quantum well (QW) (15nm, p=1x 10" cm —3)/AlAs (6 nm)/GaAs:Be
(100 nm, p=3 x 108 cm ~3) heterostructure is fabricated on a pT-GaAs (001) substrate. The device Z has a nonmagnetic GaAs:Be QW and a

ferromagnetic GaMnAs electrode, without a ferromagnetic QW. The bias voltage V is applied between an Au electrode and the backside of the substrate.
(b) Schematic valence-band (VB) diagram of device Z when a negative V is applied. See Fig. 2c for the legend. (¢) Obtained dl/dV-V characteristics with the

magnetic field directions ¢ =45° (pink) and 135° (light blue) at 3.5K. These two curves are nearly completely overlapping. (d) The fourfold symmetry

component C,4 along (100) (green), twofold symmetry component C[ZHOJ along [110] (pink) and twofold symmetry component C[Zowo] along [010] (grey) as a

function of V. These components are obtained by fitting the curves expressed by equation (2) to the normalized dl/dV-¢ curves at each V. The vertical
dotted lines in (¢,d) represent the V at which C4 reaches a dip. (e) Colour-coded map representing the normalized di/dV as a function of ¢ and V.

(f) Characteristic of dl/dV-V at ¢ =0°. The blue and green arrows indicate the V of the dip and peak that are used in g. (g) Normalized dI/dV-¢ curves at
V= —0.14V (blue) and V= — 0.2V (green) indicated by the blue and green arrows in f, respectively. The black solid curves are obtained by the fitting.
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the etching liquid so that the thickness of the GaMnAs layer changes from 0 to
25nm in the same wafer. Then, we made circular mesa devices with a diameter of
200 um on the wafer by chemical wet etching for devices A-C and Z. We then
coated a negative insulating resist on the wafers for the passivation of the surfaces
and opened contact holes with a diameter of 180 um on the mesa devices. Then, we
deposited Au on the wafers and fabricated contact pads on them.

We carried out the device process, especially the procedure from the surface
etching to the Au evaporation, very quickly to minimize the oxidation of the
surface GaMnAs layer. Indeed, the resonant levels systematically change with the
change in the thickness d of the GaMnAs layer as shown in Supplementary Fig. 4.
Also, similar results have been observed in tunnelling devices with GaMnAs
fabricated by similar methods?”#°. Furthermore, the ¢ dependence of dI/dV
around 0 V and in the positive V region is similar among samples A-C as shown in
Fig. 4a,d,g. Therefore, extrinsic effects induced by the device process are negligible.

Data procedure. We obtained the derivative of the I-V characteristics numerically
using the Savitzky-Golay filter. We used seven data points to obtain the derivative
at a single point.

In our fitting, we determined the fitting parameters by the modified Levenberg—
Marquardt least squares method.

Data availability. The data that support the findings of this study are included in
Supplementary Information, and other data are available from the corresponding
authors on request.
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