Figure 3: Energy-loss results. | Nature Communications

Figure 3: Energy-loss results.

From: Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter

Figure 3

(a) Effective charge state of a nitrogen bunch in the plasma versus time according to a Monte-Carlo description as well as the Kreussler and the Gus’kov models, compared with the mean charge state in the solid target Zsol=4.88. All values are averaged over the ion trajectory through the target. (b) Measured energy loss as a function of the bunch probing time and normalized to its value in the solid target (taken to be 100%) compared with the predictions of the LP and the TM stopping-power models applying the Monte-Carlo, Kreussler and Gus’kov projectile charge models respectively. The simulated target areal density (ρR), also normalized to its value in the solid target, represents the 3D plasma expansion dynamics. (c) Measured energy loss compared with the predictions of the LP, TM as well as BPS stopping-power models using the Gus’kov projectile charge model. The shaded areas show the differences between calculations considering the 1D (upper lines) or 2D plasma profile (bottom lines) respectively (cf. Fig. 2c). (d) Measured energy loss compared with calculations for the LP and TM stopping-power models using the Gus’kov projectile charge model, corresponding to the originally simulated density and temperature profiles (LP; TM), densities =ne/2 and temperatures =Te−40 eV (LP max; TM max) as well as densities =2 ne and temperatures =Te+40 eV (LP min; TM min), respectively. The shaded areas thus illustrate the maximum error in the energy-loss calculation due to uncertainties in the plasma parameters. Due to time averaging over the 5.5 ns bunch, the beam charge state in a as well as the energy loss in (bd) for t=0 ns, are already larger than their respective values in the solid target. The error bars on the energy loss correspond to one s.d. (1σ) of the uncertainty in the time shifts in the detector signals.

Back to article page