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Quantum precision enhancement is of fundamental importance for the development of 
advanced metrological optical experiments, such as gravitational wave detection and 
frequency calibration with atomic clocks. Precision in these experiments is strongly limited by 
the 1 N  shot noise factor with N being the number of probes (photons, atoms) employed in  
the experiment. Quantum theory provides tools to overcome the bound by using entangled 
probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. 
Here we show that when decoherence is taken into account, the maximal possible quantum 
enhancement in the asymptotic limit of infinite N amounts generically to a constant factor 
rather than quadratic improvement. We provide efficient and intuitive tools for deriving the 
bounds based on the geometry of quantum channels and semi-definite programming. We apply 
these tools to derive bounds for models of decoherence relevant for metrological applications 
including: depolarization, dephasing, spontaneous emission and photon loss. 
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Quantum-enhanced metrology aims to exploit quantum fea-
tures of atoms and light such as entanglement, for meas-
uring physical quantities with precision going beyond  

the classical limit1–4. A prominent example is that of an optical 
interferometer, where interference of photons at the output port 
carries information on the relative optical path difference between 
the interferometer arms. When standard laser light is used, the 
observed results are compatible with the claim that ‘each photon 
interferes only with itself ’5 and the whole process may be regarded 
as sensing with N independent probes (photons). Parameter estima-
tion with N independent probes yields the 1/ N  ‘standard scaling’ 
(SS) of precision6. Entangling the probes however, can in princi-
ple offer a quadratic enhancement in precision, that is, the 1/N or 
‘Heisenberg scaling’ (HS)7–11. Such strategies have been experi-
mentally realized in optical interferometry12–16 with exciting appli-
cations in the quest for the first direct detection of gravitational 
waves17,18. Moreover, the same quantum enhancement principle 
can be utilized in atomic spectroscopy19,20 where the spin-squeezed 
states have been employed for improving frequency calibration  
precision21–24. Alternative approaches to beat the SS without  
resorting to quantum entanglement include multiple-pass25,26 and 
non-linear metrology27,28.

Unfortunately, both the theory29–35 and experiments36,37 con-
firmed the fragility of the above schemes when noise sources such 
as decoherence are considered, and it has been rigorously shown 
for particular models that asymptotically with respect to N, even 
infinitesimally small noise turns HS into SS, so that the quantum 
gain amounts to a constant factor improvement38–40.

In this paper, we develop two methods that allow us to extend 
these partial results to a broad class of decoherence models, and in 
particular to obtain fundamental bounds on quantum enhancement 
for the most relevant models encountered in the quantum metrol-
ogy literature. The two approaches complement each other in terms 
of provided intuition and power. The first method elaborates on 
the idea of ‘classical simulation’ (CS)41 and provides a bound based 
solely on the geometry of the space of quantum channels (SQC). 
When applicable, it gives an excellent intuition as to why the HS is 
lost in the presence of decoherence, but fails to yield useful bounds 
for some relevant decoherence models. The second method is based 
on the ‘channel extension’ (CE) strategy42 and requires the optimi-
zation over different Kraus representation of a quantum channel. 
However, unlike the earlier work40, which involved making an edu-
cated guess about the appropriate class of Kraus representations,  
our bound can be cast into an explicit semi-definite optimization 
problem, which is easy to solve even for complex models. The 
power of the method is demonstrated by obtaining new bounds for 
depolarization and spontaneous emission models, and re-deriving 
asymptotic bounds for dephasing and lossy interferometer with 
unprecedented simplicity.

Results
Bounds on precision in quantum-enhanced metrology. The typical 
quantum metrology scenario is depicted in Fig. 1a. An ensemble of 
N quantum systems undergo in parallel the same transformation 
ϕ , which depends on an unknown physical parameter ϕ. The 
output state is measured and the outcome is used to compute an 
estimate j  of the parameter ϕ as summarized below

j r jj→ 



 →⊗Λ N N .

The task is to find the optimal (possibly highly entangled) input 
state ρN and the most effective measurement strategy to minimize 
the estimation error ∆ϕN. Note that since the decoherence process 
is assumed to act independently on each of the probes, the global 
channel is described by the tensor product Λj

⊗N .

(1)(1)

We pursue the estimation problem by restricting our attention 
to estimators, which are unbiased in the neighbourhood of some 
fixed parameter value, for which the quantum Cramér–Rao bound 
(CRB) holds
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where FQ is the quantum Fisher information (QFI)9. Maximiza-
tion of QFI over input states ρN sets the limit on the achievable  
quantum-enhanced precision:
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The states that maximize the QFI and yield the HS for decoherence-
free unitary channels are typically highly entangled: the GHZ state 
in the case of atomic spectroscopy43, and the N00N state in the case 
of optical interferometry44. In the presence of decoherence, the opti-
mal input states do not have an intuitive form and the maximization 
of the QFI (with rising N) becomes hard even numerically20,29,30.

The typical behaviour of the estimation uncertainty in the  
presence of decoherence is depicted in the log–log scale in Fig. 2, 
showing that asymptotically in N the quantum gain amounts to 
a constant factor improvement over the standard 1/ N  scaling 
achievable with independent probes. The key result of this paper 
is to provide a method for a general and simple calculation of this 
constant factor improvement.

Classical simulation. To understand the idea of CS, we need to 
think of quantum channels in a geometrical way45. A quantum 
channel is a completely positive, trace-preserving map acting on 
density matrices. The space of all such transformations is convex: if 
, ′ are two channels, then p + (1 − p)′ can be realised by ran-
domly applying  or ′ with probabilities p and 1 − p. The channels 
that cannot be decomposed into a convex combination of differ-
ent channels (for example, the unitary transformations) are called 
‘extremal’. Note that while all interior points of the SQC are ‘non-
extremal’, the boundary contains both the extremal as well as some 
non-extremal channels.

We say that the family ϕ is ‘classically simulated’41 if each  
channel is written as a classical mixture of the form

Λ Λj jr r[ ]= [ ],∫ ( )dx p x x

(2)(2)
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(4)(4)
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Figure 1 | Quantum metrology and the CS idea. (a) General scheme for 
quantum-enhanced metrology. N-probe quantum state fed into N parallel 
channels is sensing an unknown channel parameter ϕ. An estimator j  is 
inferred from a measurement result on the output state. (b) CS of a quantum 
channel. The channel ϕ is interpreted as a mixture of other channels X, 
where the dependence on ϕ is moved into the mixing probabilities pϕ(X).
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where the unknown parameter enters only through the probability 
distribution pϕ of a random variable X that indicates which channel 
to pick from the set {x} (Fig. 1b). If X1, …, XN are the independent 
hidden random variables used to generate the parallel channels, we 
can rewrite the estimation problem as

j r j→ { } → ⊗ 



 →Xi i

N
i
N

Xi
N

=1 =1 .Λ 

Since conditionally on the values of Xi the output state does not carry 
any information about ϕ, the estimation precision in the above sce-
nario is at most equal to that of the classical problem of estimating ϕ 
given N independent samples from the distribution pϕ

j j→ { } →Xi i
N
=1

.

Hence, using the classical CRB46, we obtain a lower bound on the 
uncertainty of the original problem equation (1)
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where Fcl is the classical Fisher information; see Methods for an 
alternative derivation.

Provided that pϕ(x) satisfies regularity conditions required in the 
derivation of CRB46, the SS of precision follows immediately. More
over, any particular CS yields an explicit SS bound on precision. If  
many CSs are possible, we obtain the tightest SS bound for ∆ϕN by 
choosing the ‘worst’ decomposition yielding minimal Fcl[pϕ], as shown 
below. On the other hand, HS is possible only when the above condi-
tions are not satisfied. This happens, for example, in the decoherence-
free case where ϕ are unitary channels, which are extremal points 
of the SQC and the only admissible pϕ in equation (4) is the irregular 
Dirac delta distribution being zero on all channels except ϕ .

The QFI at a given ϕ0 depends only on the output state and its 
first derivative at ϕ0. This implies that any family of channels Λj , 
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(6)(6)

(7)(7)

which ‘locally coincides’ with the original one, that is,
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achieves the same maximum QFI in equation (3). It is therefore 
enough to consider the ‘local classical simulations’, that is, any mix-
tures reproducing the channel and its first derivative at given ϕ0. 
As proven in Supplementary Methods, the CS with the smallest Fcl 
can be constructed using two channels, { + ,  − }, which lie on the 
tangent line to the ‘channel trajectory’ at the two outermost points 
situated on the boundary of the set of channels (Fig. 3). The local CS 
around ϕ0 reads explicitly
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Making use of equation (7) applied to the binary probability  
distribution pj

± , we obtain

∆j e e
N N

≥ + − .

To calculate the above bound it suffices to find the ‘distances’ ε ±  of 
the channel from the boundary measured along the tangent line. 
For extremal channels, ε ±  = 0 and the bound is not useful. For non-
extremal channels, the above construction will yield a finite Fcl  
provided that ε ±  > 0, that is, Λj0  can be decomposed into a mixture 
of channels lying on the tangent. Channels that have this additional 
property will be called ‘ϕ-non-extremal’. They obey the standard 
precision scaling, and include all full-rank channels (that is, chan-
nels lying in the interior of the SQC)41,42. An explicit method for 
calculating ε ±  and hence the bound for a general quantum channel 
is described in the Methods.

Channel extension. Even though the CS method is very general, 
there are interesting examples of ‘ϕ-extremal’ decoherence models 
for which CS does not apply. In this case, one can resort to the more 
powerful but less intuitive CE method.

(8)(8)

(9)(9)

(10)(10)

1 2 5 10 20 50

0.02

0.05

0.10∆�

0.20

0.50

1.00

N

Heisenberg scaling, 1/N

Standard scaling, 1/ NAnalytical bound, const /
N

Achievable precision

Figure 2 | Estimation precision in presence of decoherence. Log–log plot 
of a generic dependence of quantum-enhanced parameter estimation 
uncertainty in the presence of decoherence as a function of the number of 
probes used. While for small number of probes the curve for achievable 
precision follows the Heisenberg scaling, it asymptotically flattens to 
approach const/ N  dependence. The ‘const’ represents the quantum 
enhancement factor. The exemplary data corresponds to the case of phase 
estimation using N photons in a Mach–Zehnder interferometer with 5% 
losses in both arms.
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Figure 3 | Local classical stimulation. Schematic representation of a local 
classical stimulation (CS) of a channel ϕ at ϕ0 that lies inside the convex 
set of quantum channels (solid oval). The optimal CS has to be valid only 
in the neighbourhood of Λj0

 along the curve Λj j dj{ } ±0
 (solid arched line) 

and corresponds to a binary mixture of channels  ± , which rest on the 
tangent (dashed) line at the two outermost points. Then, the precision of 
estimation can be lower bounded just using the distances ε ± .
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The action of the quantum channel ϕ can be described via its 
Kraus representation47:

Λj r j r j[ ]= ,
i

i iK K∑ ( ) ( )†

with Kraus operators satisfying Σi i iK K( ) ( ) =j j† . Although this 
representation is not unique, different sets of linearly independent 
Kraus operators are related by unitary transformations

K u Ki
j

ij j( ) = ( ) ( ),j j j∑

where u(ϕ) is a unitary matrix possibly depending on ϕ.
An equivalent definition of the QFI has been proposed40,42

F FQ QΛ Ψ
Ψ

j
j

jr[ ]  〉( )
〉

= | ,
|
min

where the minimization is performed over all ϕ differentiable puri-
fications of the output state

Λ Ψ Ψj j jr[ ]= | | .TrE 〉〈{ }
For pure input state, different purifications correspond to different 
equivalent Kraus representations of the channel, as in equation (12).  
For many quantum metrological models40, one can make an  
educated guess of a purification and derive excellent input- 
independent analytical bounds providing the correct asymptotic 
scaling of precision. Nevertheless, the method may be cumber-
some especially when the channel description involves many Kraus 
operators.

A simpler bound can be derived by exploiting the intuitive 
observation that allowing the channel to act in a trivial way on  
an extended space, can only improve the precision of estimation, 
that is,

r
j

r
jr rmax maxF FQ QΛ Λ[ ]  ≤ ⊗ [ ] 

ext
extI .

This leads to an upper bound on FN , which goes around the input 
state optimization, yielding42:
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where ||·|| denotes the operator norm, the minimization is  
performed over all equivalent Kraus representations of ϕ , and

a j j b j j    
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where  K Ki i( ) = ( )j jj∂ . For any given ϕ = ϕ0, equation (16) involves 
only Ki  and its first derivatives at ϕ0. Moreover, the bound is insen-
sitive to changing the Kraus representations with a ϕ-independent 
u. Therefore, it is enough to parameterize equivalent Kraus rep-
resentations in equation (12) with a hermitian matrix h, which is 
generator of u(ϕ) = exp[ − ih(ϕ − ϕ0)]. This reduces the optimization 
problem equation (16) to a minimization over h.

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)

(17)(17)

As the SS of precision holds when FN  scales linearly with N, the 
bound equation (16) implies that a sufficient condition for SS is to 
find h for which b K = 0, or equivalently42:

i j
ij i j

q
q qh K K K K

,

= .∑ ∑† †i 

Here we go a step further and show that in this case we can obtain a 
quantitative SS bound

FN
h

KN≤ 4 ,min a 

where the minimization runs over h satisfying equation (18), and 
can be formulated as a semi-definite program, as described in the 
Methods section.

Moreover, it turns out that the bound resulting from find-
ing the global minimum in equation (19) is at least as tight as the  
one derived using the CS method based on equation (7) (see  
Supplementary Methods) proving superiority of the CE over the  
CS method.

Examples. All examples of channels presented below are of the form 
ϕ[ρ] = [Uϕ ρUϕ

† ], that is, a concatenation of a unitary rotation 
encoding the estimated parameter ϕ and an ϕ-independent deco-
herence process. Consequently, Ki(ϕ) = KiUϕ , where Ki(ϕ), Ki are 
the Kraus operators of ϕ and , respectively. The most relevant 
models in quantum-enhanced metrology belong to this class, but 
the methods presented may be applied to more general models  
as well.

In what follows, we adopt the standard notation where  is the 
2×2 identity matrix and si i{ } =1

3  are the Pauli operators. We focus 
on two-level probe systems (qubits) sensing a phase shift modelled 
using a unitary U(ϕ) = exp[(is3ϕ)/2]—rotation of the Bloch ball 
around the z axis. In the case of atomic clocks’ frequency calibration 
ϕ = δω · t with δω being the detuning between the frequency of the 
atomic transition and the frequency of driving field, while t is the 
time of evolution. Even though in practice the parameter to be esti-
mated is δω, we will consider that to be ϕ, to have a unified notation 
for atomic and optical models. In the case of a two-mode optical 
interferometer, U(ϕ) is the operator acting on a single photon state, 
accounting for the accumulated relative phase shift ϕ between the 
two arms of the interferometer.

We apply the methods to four decoherence processes encoun-
tered in quantum-enhanced metrology: two-level atom depolariza-
tion, dephasing, spontaneous emission and the photon loss inside 
the interferometer. These examples will provide us with the full pic-
ture of the applicability of the methods discussed in the paper, as 
their cover all distinct cases from the point of view of the geometry 
of SQC.

Depolarization. Two-level atom depolarization describes an iso-
tropic loss of coherence and may be visualized by a uniform Bloch 
ball shrinking (Fig. 4a) where 0≤η < 1 is the final Bloch ball radius. 
Its description involves four Kraus operators

K Ki i
i

0
=1 3

=
1 3

4
, =

1

4

+ −










h hs

…

which makes it an example of a channel lying in the interior of the 
SQC. Using CS method, we infer the SS of precision and calculate the 
‘distances’ from the boundary of the SQC  e h h h± − += (1 )(1 3 )/(2 ) 
(see Methods) resulting in the bound presented in Table 1. Applying  

(18)(18)

(19)(19)

(20)(20)
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the CE method, it is possible to further improve the bound and the 
analytical result of the semi-definite optimization is also shown in 
Table 1. The only non-zero elements of the corresponding optimal 
h are h h c03 30= = (1 )(1 3 )/− +h h  and h12 =  − h21 =  − i(1 + η)/c 
where c = 2(1 − η)(1 + 2η). To our best knowledge, the bound has 
not been derived before.

Dephasing. Dephasing is a decoherence model of two-level atoms 
subject to fluctuating external magnetic/laser fields. In graphical 
representation, it corresponds to shrinking of the Bloch ball in x, 
y directions with z direction intact (Fig. 4b). The canonical Kraus 
operators read47

K K0 1 3=
1

2
, =

1

2
,

+ −h hs

where 0≤η < 1 is the dephasing parameter. As it involves only two 
Kraus operators, it is not a full-rank channel and lies on the bound-
ary of the SQC. It is, however, a non-extremal and more importantly 
ϕ-non-extremal channel allowing for the CS construction with 
e h h± −= 1 /2  (see Methods), yielding the bound given in Table 1.

Most importantly, the above bound, is exactly the same as the 
one derived by Escher et al.40 or by the CE method, where the mini-

mum in equation (19) corresponds to h = / 2 11s h−( )2 . This proves  

that despite its simplicity the CS method may sometimes lead to 

(21)(21)

bounds that are equally tight as the ones derived with much more 
advanced methods even for channels lying on the boundary of  
the SQC.

Spontaneous emission. The well-known two-level atom spontane-
ous emission model is described by the Kraus operators

K K0 1=
1 0

0
, =

0 1

0 0h
h





−






with 0≤η < 1. Interestingly, for all η this channel is extremal48, which 
means that the CS is not applicable. Nevertheless, the CE method of 
equation (19) can be easily employed.

Substituting Ki(ϕ) into equation (18), we find that the genera-
tor h is fixed to h z= ( )1

2(1 )− −h s h . Consequently, there is no need 

for minimization over h and from equation (19) we automatically 
obtain an SS bound listed in Table 1, which to our knowledge has 
not been reported in the literature before.

Lossy interferometer. To model ‘loss’ in an optical interferometer, 
a third orthogonal state at the output,—vacuum—resulting from a 
loss of a photon, needs to be introduced. The decoherence channel 
on a single probe (single photon) is a map from a two- to a three-
dimensional system:

K K K0 1 2=

0 0
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0 0

0 0

1 0
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where η is the power transmission coefficient for the light travel-
ling through each of the two arms. Although the corresponding 
channel ϕ is non-extremal, it is unfortunately ϕ-extremal and CS 
cannot be used. Still, CE method can be easily applied. The opti-
mal bound (see Table 1) corresponds to h with non-zero elements 
h h00 11

1
2(1 )

= =− −h . This bound is asymptotically equally tight to 

the best bounds known in the literature38–40, proving again that CE 
method despite its simplicity is able to provide powerful results in a 
straightforward manner.

In optical interferometric applications, it is common to use states 
of light with an unbounded number of photons, such as coherent 
or squeezed states49–53. At a first glance, it is not obvious that the 
model considered in the paper covers these situations. Formally 
speaking, the bound we have derived applies to input states with a 
total number of photons fixed to N. Notice, however, that in every 

(22)(22)

(23)(23)
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Figure 4 | Graphical representation of decoherence models. Two-level atom decoherence processes are illustrated with a corresponding shrinking of 
the Bloch ball (blue) for the cases of: (a) depolarization, (b) dephasing and (c) spontaneous emission. The estimated parameter ϕ represents the angle 
of rotation about the z axis, whereas η specifies the strength of decoherence and effectively the size of shrinkage in the x–y plane. In the example (d) of 
the lossy interferometer, ϕ corresponds to the additional phase acquired by photons travelling in the upper arm and η stands for the power transmission 
coefficient in each of the arms.

Table 1 | Precision bounds of the most relevant models in 
quantum-enhanced metrology.

Channel 
considered

Classical simulation Channel extension

Depolarisation
 (1 )(1 3 )/4 2−h h h+  (1 )(1 2 )/2 2− +h h h

Dephasing  1 2−h h/  1 2−h h/
Spontaneous 
emission NA  (1 2) 1/ /−h h

Lossy 
interferometer NA  1−h h/

NA, not available.
The bounds are derived using the two methods discussed in the paper. All the bounds are of 
the form ∆jN / N≥ ( )const , where constant factors are given in the table. Classical  
simulation method does not provide bounds for spontaneous emission and lossy interfero
meter, as these channels are ϕ-extremal. For the dephasing model, it surprisingly yields  
an equally tight bound as the more powerful channel extension method.
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optical experiment what is measured in the end are photon numbers. 
If all phase reference beams are taken into account, we can regard 
quantum states of light as incoherent mixtures of states occupying 
different total photon number sectors53,54. From the point of view 
of metrology, the QFI is then bounded from above by the weighted 
sum of QFIs for each of these sectors30. Within each sector we can 
easily apply our bound and, as the bound is linear in N, the effective 
bound will simply correspond to replacing N with N—the mean 
number of photons in all relevant beams used in the experiment—
and as such can be automatically applied to experiments involving 
coherent and squeezed light.

To demonstrate the practical relevance of the bound, it is 
instructive to compare its predictions with the actual quantum 
enhancement observed recently in the GEO600 gravitational wave  
detector17. Although a detailed theoretical analysis of the set-
up from the perspective of the derived bounds is still underway,  
by reducing the essential features of the set-up to a simple Mach–
Zehnder interferometer, we can already give a preliminary estimate 
on how far is the actual experiment from the optimal perform-
ance. For the reported overall optical transmission η = 0.62, the 
theoretically predicted maximal quantum enhancement amounts 
to a 1 = 0.62−h  factor reduction in estimation uncertainty com-
pared with the classical 1/ hN  limit. The reported experimentally 
observed reduction was a factor of 0.67, which is an indication that 
the experiment operates close to the fundamental quantum limit 
and any significant improvement is possible only if the optical loss 
is further reduced.

Discussion
Assessing the impact of decoherence on the maximum possible 
quantum enhancement is a crucial element in developing quantum 
techniques for metrological applications. The tools developed here 
allow for a direct calculation of bounds on the precision enhance-
ment for arbitrary parameter estimation model where the decoher-
ence process acts independently on each of the probes and may 
be represented with a finite number of Kraus operators. The CE 
method is more powerful and for the most relevant metrological 
models yields in the asymptotic limit of large number of probes the 
tightest bounds known in the literature. Yet the CS method, which 
may fail to provide equally tight bounds, provides an intuitive  
geometric insight into the absence of asymptotic HS in the pre
sence of decoherence. From the derived bounds, it is clear that if 
the HS was to be preserved for large number of probes N the level 
of decoherence would have to decrease with increasing N roughly 
as (1 − η)≈1/N. This gives an estimate on the regime in which the 
quantum enhancement is quadratic as compared with the regime of 
constant factor improvement. This is clearly seen in Fig. 2 where this 
transition appears around N≈1/(1 − η) = 20 for η = 0.95. As in most 
metrology applications N is larger by several order of magnitude, we 
expect that the SS scaling provides a reliable bound for the optimal 
estimation precision.

An important question that was not addressed here is the satura-
bility of the bounds. The CS method does not provide tight bounds 
in general. As for the CE method, we are not able to prove that the 
bounds we have derived are saturable in the asymptotic limit. We 
should stress however, that these are lower bounds on estimation 
uncertainties and an upper bound can always be found by choos-
ing a particular estimation method. Therefore, if a certain strategy 
performs close to the derived bound, we can certify that it is not far 
from reaching the fundamental quantum limit, as illustrated by the 
results of the GEO600 experiment.

Even though the minimization over purification method40 yields 
in principle a tight bound, in practice there is no effective algorithm 
to find a global minimum, and the only way to convince oneself 
that one has achieved the global minimum is again to show that the 

theoretical lower bound on estimation uncertainty coincides with 
the performance of a particular estimation strategy.

The methods discussed were focused on deriving useful bounds 
in the asymptotic regime of a large number of probes. Still, the 
bounds are valid (though weaker) for any value of N. We leave it 
for a future work to improve the bounds for finite N, which seems 
to be possible by using the CE method and relaxing the b K = 0  
constraint.

Methods
Proof of the CS bound. To simplify the reasoning, let us focus on the CSs that are 
constructed using discrete sets of quantum channels, {i}. Then, the considered 
channel’s action of equation (4) can be rewritten as a ϕ-independent map acting  
on a larger input space41

Λ Λ Φj j jr r r s[ ]= [ ]= ,,
i

i ip∑ ⊗ 

where sj j= ,Σi i i ip e e  represents a diagonal state in some basis, in which Φ  
is defined via Φ Σ Λ[ ]= ( )[ ]r ri i iE⊗  with Ei[σ] = 〈ei|s|ei〉. To prove equation (7),  
we write the QFI for the N parallel use of the channel and bound it from above, 
that is
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exploiting the monotonicity of the QFI under any parameter-independent  
quantum map55, here Φ⊗N .

Calculation of the CS bound. The geometry of the space of channels and more 
specifically the ϕ-extremality are best viewed by using the Choi–Jamiołkowski 
isomorphism56,57. Given a quantum channel Λ : ( ) ( )L H L Hin out  acting from 
the space of density matrices on Hin to density matrices on Hout, one defines 

PΛ Λ Ψ Ψ= [ ]⊗ I , where Ψ = 〉⊗ 〉∑ | |i ii=1
din inH  is a maximally entangled state in  

HinHin.  is a physical channel (that is, trace preserving, completely positive 
map) if P is a positive semi-definite operator, satisfying Tr outH { } =PΛ . If {Ki}i are 
the Kraus operators of the  channel, we can write explicitly P K Ki i iΛ Σ= | |〉〈 ,  
where |Ki〉 = Ki |Ψ〉.

We can now say that the channel ϕ is ϕ-non-extremal, if it is possible to find 
a non-zero ε, for which P PΛ Λj j je± ∂ ≥ 0. See Supplementary Methods for an 
alternative formulation of the ϕ-non-extremality condition and its relation to the 
well-known non-extremality condition due to Choi57. In practice, if we want to 
make most out of the bound in equation (10), we need to find the maximum values 
of ε ± , for which P PΛ Λj j je± ∂±  are still positive semi-definite operators. This is a 
simple eigenvalue problem and therefore the bound can be obtained immediately.

Taking the dephasing model as an example, the Choi–Jamiołkowski  
isomorphism of the corresponding ϕ channel P K U K Ui i iΛ Σj j j= | |2

1= 〉〈   
has a simple form:
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It is easy to check that P PΛ Λj j je+ ∂ ≥ 0 provided | | 1 /2e h h≤ − , hence using 
equation (10) we arrive at the bound given in Table 1.

CE method as a semi-definite program. Here we show that the minimization 
problem in equation (19) can be formulated as a simple semi-definite program.  
Let the channel ϕ be a map from a d1- to a d2-dimensional Hilbert spaces  
with Kraus representation involving k linear independent Kraus operators  
(d2×d1 matrices). Consider the following block matrix:
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where  is a d×d identity matrix. Positive semi-definiteness of the matrix A is 
equivalent to the condition

a   
K

i
i i dK K t= .1∑ ≤†

Minimizing the operator norm  a K  is thus equivalent to minimizing t subject to 
A ≥ 0. Taking into account equation (18), the problem takes the form:

min
h ij

ij i j
q

q qt A h K K K K, : 0, = .subject to i≥ ∑ ∑† †

Since  K K h Ki i j ij j= − iΣ  the matrix A is linear in h and the problem is thus a semi-
definite program with the resulting minimal t being the minimal operator norm 
 a K . For the purpose of this paper, we have implemented the program using the 
CVX package for Matlab58. 
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