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The elusive Heisenberg limit in quantum-
enhanced metrology

Rafat Demkowicz-Dobrzanski', Jan Kotodyniski! & Madalin Guta?

Quantum precision enhancement is of fundamental importance for the development of
advanced metrological optical experiments, such as gravitational wave detection and
frequency calibration with atomic clocks. Precision in these experiments is strongly limited by
the 1/\/N shot noise factor with N being the number of probes (photons, atoms) employed in
the experiment. Quantum theory provides tools to overcome the bound by using entangled
probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N.
Here we show that when decoherence is taken into account, the maximal possible quantum
enhancement in the asymptotic limit of infinite N amounts generically to a constant factor
rather than quadratic improvement. We provide efficient and intuitive tools for deriving the
bounds based on the geometry of quantum channels and semi-definite programming. We apply
these tools to derive bounds for models of decoherence relevant for metrological applications
including: depolarization, dephasing, spontaneous emission and photon loss.
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uantum-enhanced metrology aims to exploit quantum fea-

tures of atoms and light such as entanglement, for meas-

uring physical quantities with precision going beyond
the classical limit'~%. A prominent example is that of an optical
interferometer, where interference of photons at the output port
carries information on the relative optical path difference between
the interferometer arms. When standard laser light is used, the
observed results are compatible with the claim that ‘each photon
interferes only with itself”> and the whole process may be regarded
as sensing with N independent probes (photons). Parameter estima-
tion with N independent probes yields the 1/</N ‘standard scaling’
(SS) of precision®. Entangling the probes however, can in princi-
ple offer a quadratic enhancement in precision, that is, the 1/N or
‘Heisenberg scaling’ (HS)”~!!. Such strategies have been experi-
mentally realized in optical interferometry'2-16 with exciting appli-
cations in the quest for the first direct detection of gravitational
waves!718, Moreover, the same quantum enhancement principle
can be utilized in atomic spectroscopy!>?? where the spin-squeezed
states have been employed for improving frequency calibration
precision?!~24, Alternative approaches to beat the SS without
resorting to quantum entanglement include multiple-pass?>2¢ and
non-linear metrology?”-28.

Unfortunately, both the theory?*~3> and experiments
firmed the fragility of the above schemes when noise sources such
as decoherence are considered, and it has been rigorously shown
for particular models that asymptotically with respect to N, even
infinitesimally small noise turns HS into SS, so that the quantum
gain amounts to a constant factor improvement38-40,

In this paper, we develop two methods that allow us to extend
these partial results to a broad class of decoherence models, and in
particular to obtain fundamental bounds on quantum enhancement
for the most relevant models encountered in the quantum metrol-
ogy literature. The two approaches complement each other in terms
of provided intuition and power. The first method elaborates on
the idea of ‘classical simulation’ (CS)*! and provides a bound based
solely on the geometry of the space of quantum channels (SQC).
When applicable, it gives an excellent intuition as to why the HS is
lost in the presence of decoherence, but fails to yield useful bounds
for some relevant decoherence models. The second method is based
on the ‘channel extension’ (CE) strategy*? and requires the optimi-
zation over different Kraus representation of a quantum channel.
However, unlike the earlier work®’, which involved making an edu-
cated guess about the appropriate class of Kraus representations,
our bound can be cast into an explicit semi-definite optimization
problem, which is easy to solve even for complex models. The
power of the method is demonstrated by obtaining new bounds for
depolarization and spontaneous emission models, and re-deriving
asymptotic bounds for dephasing and lossy interferometer with
unprecedented simplicity.

3637 con-

Results

Bounds on precision in quantum-enhanced metrology. The typical
quantum metrology scenario is depicted in Fig. 1a. An ensemble of
N quantum systems undergo in paralle]l the same transformation
Ay, which depends on an unknown physical parameter ¢. The
output state is measured and the outcome is used to compute an
estimate @ of the parameter ¢ as summarized below

o> AN [V |56, (1)

The task is to find the optimal (possibly highly entangled) input
state pN and the most effective measurement strategy to minimize
the estimation error A@y. Note that since the decoherence process
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Figure 1| Quantum metrology and the CS idea. (a) General scheme for
quantum-enhanced metrology. N-probe quantum state fed into N parallel
channels is sensing an unknown channel parameter @. An estimator ¢ is
inferred from a measurement result on the output state. (b) CS of a quantum
channel. The channel Aq, is interpreted as a mixture of other channels Ay,
where the dependence on ¢ is moved into the mixing probabilities p,(X).

We pursue the estimation problem by restricting our attention
to estimators, which are unbiased in the neighbourhood of some
fixed parameter value, for which the quantum Cramér-Rao bound
(CRB) holds

1
R

where F is the quantum Fisher information (QFI)°. Maximiza-
tion of QFI over input states pV sets the limit on the achievable
quantum-enhanced precision:

@
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The states that maximize the QFI and yield the HS for decoherence-
free unitary channels are typically highly entangled: the GHZ state
in the case of atomic spectroscopy3, and the NOON state in the case
of optical interferometry**. In the presence of decoherence, the opti-
mal input states do not have an intuitive form and the maximization
of the QFI (with rising N) becomes hard even numerically?0->%-30,

The typical behaviour of the estimation uncertainty in the
presence of decoherence is depicted in the log-log scale in Fig. 2,
showing that asymptotically in N the quantum gain amounts to
a constant factor improvement over the standard 1/v/N scaling
achievable with independent probes. The key result of this paper
is to provide a method for a general and simple calculation of this
constant factor improvement.

Classical simulation. To understand the idea of CS, we need to
think of quantum channels in a geometrical way*’. A quantum
channel is a completely positive, trace-preserving map acting on
density matrices. The space of all such transformations is convex: if
A, A’ are two channels, then pA +(1-p)A’ can be realised by ran-
domly applying A or A’ with probabilities p and 1 - p. The channels
that cannot be decomposed into a convex combination of differ-
ent channels (for example, the unitary transformations) are called
‘extremal’ Note that while all interior points of the SQC are ‘non-
extremal, the boundary contains both the extremal as well as some
non-extremal channels.

We say that the family A, is ‘classically simulated! if each
channel is written as a classical mixture of the form

is assumed to act independently on each of the probes, the global Aplp] = [dx

> = x) A [ ]) 4
channel is described by the tensor product A%N . olP J. P(p( ) Adlp “)
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Figure 2 | Estimation precision in presence of decoherence. Log-log plot
of a generic dependence of quantum-enhanced parameter estimation
uncertainty in the presence of decoherence as a function of the number of
probes used. While for small number of probes the curve for achievable
precision follows the Heisenberg scaling, it asymptotically flattens to
approach const/~/N dependence. The ‘const’ represents the quantum
enhancement factor. The exemplary data corresponds to the case of phase
estimation using N photons in a Mach-Zehnder interferometer with 5%
losses in both arms.

where the unknown parameter enters only through the probability
distribution p, of a random variable X that indicates which channel
to pick from the set {A,} (Fig. 1b). If X, ..., Xy are the independent
hidden random variables used to generate the parallel channels, we
can rewrite the estimation problem as

o (X}, > eNay[pN ] )

Since conditionally on the values of X; the output state does not carry
any information about ¢, the estimation precision in the above sce-
nario is at most equal to that of the classical problem of estimating ¢
given N independent samples from the distribution p,,

P {X]N, = 0. 6)

Hence, using the classical CRB*%, we obtain a lower bound on the
uncertainty of the original problem equation (1)

de[ oro®)] )
p(p(x) ’

Apy 2 ’7N i

where Fg is the classical Fisher information; see Methods for an
alternative derivation.

Provided that p(x) satisfies regularity conditions required in the
derivation of CRB46 the SS of precision follows immediately. More-
over, any particular CS yields an explicit SS bound on precision. If
many CSs are possible, we obtain the tightest SS bound for Agy by
choosing the ‘worst’ decomposition yielding minimal Fg[pl, as shown
below. On the other hand, HS is possible only when the above condi-
tions are not satisfied. This happens, for example, in the decoherence-
free case where A, are unitary channels, which are extremal points
of the SQC and the only admissible p, in equation (4) is the irregular
Dirac delta distribution being zero on all channels except A .

The QFI at a given ¢, depends only on the output state and its
first derivative at ¢p. This implies that any family of channels A,

Figure 3 | Local classical stimulation. Schematic representation of a local
classical stimulation (CS) of a channel A, at g that lies inside the convex
set of quantum channels (solid oval). The optimal CS has to be valid only

in the neighbourhood of A‘Po along the curve {Aw}%ﬁw (solid arched line)

and corresponds to a binary mixture of channels A 4, which rest on the
tangent (dashed) line at the two outermost points. Then, the precision of
estimation can be lower bounded just using the distances €.

which ‘Tocally coincides’ with the original one, that is,

]\(po [P] = A(PO [P]) aq)A(p [P]Lpo = a(pA(p [P]LPO > (8)

achieves the same maximum QFI in equation (3). It is therefore
enough to consider the ‘local classical simulations, that is, any mix-
tures reproducing the channel and its first derivative at given ¢y.
As proven in Supplementary Methods, the CS with the smallest F
can be constructed using two channels, {A , A _}, which lie on the
tangent line to the ‘channel trajectory’ at the two outermost points
situated on the boundary of the set of channels (Fig. 3). The local CS
around ¢ reads explicitly

Aglpl= ppAlpl+ pyA_lpl, ©)
with
£x+(9—9)
Aslpl= Ay [plE s DpA ) Py =
+lpl= Ay, [plEes 9y (p[p](po Py Zte

Making use of equation (7) applied to the binary probability
distribution p(p, we obtain

£,
N

(10)

Apy 2

To calculate the above bound it suffices to find the ‘distances’ €4 of
the channel from the boundary measured along the tangent line.
For extremal channels, €4 =0 and the bound is not useful. For non-
extremal channels, the above construction will yield a finite Fy
provided that £4 >0, that is, A, can be decomposed into a mixture
of channels lying on the tangent. Channels that have this additional
property will be called ‘@p-non-extremal’ They obey the standard
precision scaling, and include all full-rank channels (that is, chan-
nels lying in the interior of the SQC)*142, An explicit method for
calculating €+ and hence the bound for a general quantum channel
is described in the Methods.

Channel extension. Even though the CS method is very general,
there are interesting examples of ‘@p-extremal’ decoherence models
for which CS does not apply. In this case, one can resort to the more
powerful but less intuitive CE method.
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The action of the quantum channel A, can be described via its
Kraus representation 47,

ZK (¢)p i (), (11)

with Kraus operators satisfying Z,»Ki((p)Jr K;(p)=1. Although this
representation is not unique, different sets of linearly independent
Kraus operators are related by unitary transformations

Ki(@) = Yui( @)K j(p), (12)
j
where u(¢) is a unitary matrix possibly depending on ¢.
An equivalent definition of the QFI has been proposed 042
Fo[ Aglp]]= min Fo(I'¥p)), (13)

[Yo)

where the minimization is performed over all ¢ differentiable puri-
fications of the output state

Aglpl=Trg {| W (¥, }- (14)

For pure input state, different purifications correspond to different
equivalent Kraus representations of the channel, as in equation (12).
For many quantum metrological models?’, one can make an
educated guess of a purification and derive excellent input-
independent analytical bounds providing the correct asymptotic
scaling of precision. Nevertheless, the method may be cumber-
some especially when the channel description involves many Kraus
operators.

A simpler bound can be derived by exploiting the intuitive
observation that allowing the channel to act in a trivial way on
an extended space, can only improve the precision of estimation,
that is,

max Fo[ Ag[p]]<max Fo[ Ay ®1[pex]] (15)

P Pext

This leads to an upper bound on Fy, which goes around the input
state optimization, yielding*2:

Fn s4m1%n{N||ak||+N(N_1)||ﬁk"2} (16)

where ||-|| denotes the operator norm, the minimization is
performed over all equivalent Kraus representations of A, and

ag = ZKT )Ki(@), ﬂK—IZKT K(@), (17)

wherej%i (@) = 9,K;(¢). For any given ¢ = ¢, equation (16) involves
only K; and its first derivatives at ¢). Moreover, the bound is insen-
sitive to changing the Kraus representations with a ¢-independent
u. Therefore, it is enough to parameterize equivalent Kraus rep-
resentations in equation (12) with a hermitian matrix h, which is
generator of u(¢p) =exp[ —ih(¢@— ¢y)]. This reduces the optimization
problem equation (16) to a minimization over h.

As the SS of precision holds when Fy scales linearly with N, the
bound equation (16) implies that a sufficient condition for SS is to
find h for which B =0, or equivalently**:

hiKIK; =iy KiK
i,] q

(18)

Here we go a step further and show that in this case we can obtain a
quantitative SS bound

Fy < 4thin||ak||, (19)

where the minimization runs over h satisfying equation (18), and
can be formulated as a semi-definite program, as described in the
Methods section.

Moreover, it turns out that the bound resulting from find-
ing the global minimum in equation (19) is at least as tight as the
one derived using the CS method based on equation (7) (see
Supplementary Methods) proving superiority of the CE over the
CS method.

Examples. All examples of channels presented below are of the form
Aglp] =A[U(ppU;[,], that is, a concatenation of a unitary rotation
encoding the estimated parameter ¢ and an ¢-independent deco-
herence process. Consequently, Ki(¢) =K;U,,, where Kij(¢), K; are
the Kraus operators of A, and A, respectively. The most relevant
models in quantum-enhanced metrology belong to this class, but
the methods presented may be applied to more general models
as well.

In what follows, we adopt the standard notation where 1 is the
2x2 identity matrix and {o; }13 are the Pauli operators. We focus
on two-level probe systems (qubits) sensing a phase shift modelled
using a unitary U(@)=exp|[(io3¢)/2]—rotation of the Bloch ball
around the z axis. In the case of atomic clocks’ frequency calibration
@=03w-t with S being the detuning between the frequency of the
atomic transition and the frequency of driving field, while ¢ is the
time of evolution. Even though in practice the parameter to be esti-
mated is 3, we will consider that to be ¢, to have a unified notation
for atomic and optical models. In the case of a two-mode optical
interferometer, U(¢) is the operator acting on a single photon state,
accounting for the accumulated relative phase shift ¢ between the
two arms of the interferometer.

We apply the methods to four decoherence processes encoun-
tered in quantum-enhanced metrology: two-level atom depolariza-
tion, dephasing, spontaneous emission and the photon loss inside
the interferometer. These examples will provide us with the full pic-
ture of the applicability of the methods discussed in the paper, as
their cover all distinct cases from the point of view of the geometry
of SQC.

Depolarization. Two-level atom depolarization describes an iso-
tropic loss of coherence and may be visualized by a uniform Bloch
ball shrinking (Fig. 4a) where 0<n<1 is the final Bloch ball radius.
Its description involves four Kraus operators

EET {K,- _ H’o,}
4 4 i=1...3

Ko = (20)

which makes it an example of a channel lying in the interior of the
SQC. Using CS method, we infer the SS of precision and calculate the
‘distances’ from the boundary of the SQC &4 =/(1-1)(1+3n)/(2n)
(see Methods) resulting in the bound presented in Table 1. Applying
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Figure 4 | Graphical representation of decoherence models. Two-level atom decoherence processes are illustrated with a corresponding shrinking of
the Bloch ball (blue) for the cases of: (a) depolarization, (b) dephasing and (c) spontaneous emission. The estimated parameter @ represents the angle
of rotation about the z axis, whereas 1 specifies the strength of decoherence and effectively the size of shrinkage in the x-y plane. In the example (d) of
the lossy interferometer, ¢ corresponds to the additional phase acquired by photons travelling in the upper arm and 7 stands for the power transmission

coefficient in each of the arms.

Table 1| Precision bounds of the most relevant models in
quantum-enhanced metrology.
Channel extension

Channel Classical simulation

considered

Depolarisation

Ja-maesnan Ja-ma+any/2n?

Dephasing 1/1—1]2/1‘, \/1—112/11
Spontaneous 1/2) 1=
emission NA W2 n/n
Lossy J1-
interferometer NA nin

NA, not available.

The bounds are derived using the two methods discussed in the paper. All the bounds are of
the form Ag, 2 (const/\/N), where constant factors are given in the table. Classical
simulation method does not provide bounds for spontaneous emission and lossy interfero-
meter, as these channels are @-extremal. For the dephasing model, it surprisingly yields

an equally tight bound as the more powerful channel extension method.

the CE method, it is possible to further improve the bound and the
analytical result of the semi-definite optimization is also shown in
Table 1. The only non-zero elements of the corresponding optimal
h are h03 = h30 = \l(l—n)(l+3n)/C and h12= —h21 = —1(1 + n)/C
where ¢=2(1-1)(1+2n). To our best knowledge, the bound has
not been derived before.

Dephasing. Dephasing is a decoherence model of two-level atoms
subject to fluctuating external magnetic/laser fields. In graphical
representation, it corresponds to shrinking of the Bloch ball in x,
y directions with z direction intact (Fig. 4b). The canonical Kraus

operators read?’
i+ =
Ky=,—1, K,=,—03;,
0 2 1 2 3

where 0<1<1 is the dephasing parameter. As it involves only two
Kraus operators, it is not a full-rank channel and lies on the bound-
ary of the SQC. It is, however, a non-extremal and more importantly
¢@-non-extremal channel allowing for the CS construction with
£r =41- 1n?/1 (see Methods), yielding the bound given in Table 1.
Most importantly, the above bound, is exactly the same as the
one derived by Escher et al.40 or by the CE method, where the mini-

21

mum in equation (19) corresponds to h = 0'1/(2 1-1° ) This proves

that despite its simplicity the CS method may sometimes lead to

bounds that are equally tight as the ones derived with much more
advanced methods even for channels lying on the boundary of
the SQC.

Spontaneous emission. The well-known two-level atom spontane-
ous emission model is described by the Kraus operators

ol Sl

with 0<7 < 1. Interestingly, for all 1] this channel is extremal®, which
means that the CS is not applicable. Nevertheless, the CE method of
equation (19) can be easily employed.

Substituting K;(¢) into equation (18), we find that the genera-

(22)

tor h is fixed to h = ﬁ(dz —n1). Consequently, there is no need

for minimization over h and from equation (19) we automatically
obtain an SS bound listed in Table 1, which to our knowledge has
not been reported in the literature before.

Lossy interferometer. To model ‘loss’ in an optical interferometer,
a third orthogonal state at the output,—vacuum—resulting from a
loss of a photon, needs to be introduced. The decoherence channel
on a single probe (single photon) is a map from a two- to a three-

dimensional system:
0 0 0 0 Jn oo

Ko=l0 0 |\Ky=| 0 0|, Ky=| 0 nl| 23

0 J1-7n JiI-n 0 0 0

where 1) is the power transmission coefficient for the light travel-
ling through each of the two arms. Although the corresponding
channel A, is non-extremal, it is unfortunately ¢-extremal and CS
cannot be used. Still, CE method can be easily applied. The opti-
mal bound (see Table 1) corresponds to h with non-zero elements
oo = ~hy1 = 555
the best bounds known in the literature , proving again that CE
method despite its simplicity is able to provide powerful results in a
straightforward manner.

In optical interferometric applications, it is common to use states
of light with an unbounded number of photons, such as coherent
or squeezed states**>3. At a first glance, it is not obvious that the
model considered in the paper covers these situations. Formally
speaking, the bound we have derived applies to input states with a
total number of photons fixed to N. Notice, however, that in every

This bound is asymptotically equally tight to
38-40
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optical experiment what is measured in the end are photon numbers.
If all phase reference beams are taken into account, we can regard
quantum states of light as incoherent mixtures of states occupying
different total photon number sectors>>>4. From the point of view
of metrology, the QFI is then bounded from above by the weighted
sum of QFIs for each of these sectors3?. Within each sector we can
easily apply our bound and, as the bound is linear in N, the effective
bound will simply correspond to replacing N with N —the mean
number of photons in all relevant beams used in the experiment—
and as such can be automatically applied to experiments involving
coherent and squeezed light.

To demonstrate the practical relevance of the bound, it is
instructive to compare its predictions with the actual quantum
enhancement observed recently in the GEO600 gravitational wave
detector!”. Although a detailed theoretical analysis of the set-
up from the perspective of the derived bounds is still underway,
by reducing the essential features of the set-up to a simple Mach-
Zehnder interferometer, we can already give a preliminary estimate
on how far is the actual experiment from the optimal perform-
ance. For the reported overall optical transmission 11=0.62, the
theoretically predicted maximal quantum enhancement amounts
to a 4/1—17 = 0.62 factor reduction in estimation uncertainty com-
pared with the classical U\/UTV limit. The reported experimentally
observed reduction was a factor of 0.67, which is an indication that
the experiment operates close to the fundamental quantum limit
and any significant improvement is possible only if the optical loss
is further reduced.

Discussion

Assessing the impact of decoherence on the maximum possible
quantum enhancement is a crucial element in developing quantum
techniques for metrological applications. The tools developed here
allow for a direct calculation of bounds on the precision enhance-
ment for arbitrary parameter estimation model where the decoher-
ence process acts independently on each of the probes and may
be represented with a finite number of Kraus operators. The CE
method is more powerful and for the most relevant metrological
models yields in the asymptotic limit of large number of probes the
tightest bounds known in the literature. Yet the CS method, which
may fail to provide equally tight bounds, provides an intuitive
geometric insight into the absence of asymptotic HS in the pre-
sence of decoherence. From the derived bounds, it is clear that if
the HS was to be preserved for large number of probes N the level
of decoherence would have to decrease with increasing N roughly
as (1-m)=1/N. This gives an estimate on the regime in which the
quantum enhancement is quadratic as compared with the regime of
constant factor improvement. This is clearly seen in Fig. 2 where this
transition appears around N=1/(1—1) =20 for 1=0.95. As in most
metrology applications N is larger by several order of magnitude, we
expect that the SS scaling provides a reliable bound for the optimal
estimation precision.

An important question that was not addressed here is the satura-
bility of the bounds. The CS method does not provide tight bounds
in general. As for the CE method, we are not able to prove that the
bounds we have derived are saturable in the asymptotic limit. We
should stress however, that these are lower bounds on estimation
uncertainties and an upper bound can always be found by choos-
ing a particular estimation method. Therefore, if a certain strategy
performs close to the derived bound, we can certify that it is not far

theoretical lower bound on estimation uncertainty coincides with
the performance of a particular estimation strategy.

The methods discussed were focused on deriving useful bounds
in the asymptotic regime of a large number of probes. Still, the
bounds are valid (though weaker) for any value of N. We leave it
for a future work to improve the bounds for finite N, which seems
to be possible by using the CE method and relaxing the Bz =0
constraint.

Methods

Proof of the CS bound. To simplify the reasoning, let us focus on the CSs that are
constructed using discrete sets of quantum channels, {A;}. Then, the considered
channel’s action of equation (4) can be rewritten as a @-independent map acting
on a larger input space*!

Aglpl=XppiMilp)= [ p® | 4)

where 6, =Z;py; |e;){e;| represents a diagonal state in some basis, in which ®
is defined via ®[p] = Z;(A; ® E;)[p] with E;[c] =(e;|ole;). To prove equation (7),
we write the QFI for the N parallel use of the channel and bound it from above,
that is

Fo[A3" p1]- Fo 0= [pm o ]]

<r[peo]-ro[of N rglop N alp)

exploiting the monotonicity of the QFI under any parameter-independent
quantum map”?, here @®N.

Calculation of the CS bound. The geometry of the space of channels and more
specifically the @-extremality are best viewed by using the Choi-Jamiotkowski

isomorphism®®>7. Given a quantum channel A : £(Hy,) — L(Hpy, ) acting from
the space of density matrices on H;,, to density matrices on #,,, one defines

Py = AQT[P)(P|], where |} = Z:i:“l‘Hm |i)®|i) is a maximally entangled state in
Hin®@Hip. A is a physical channel (that is, trace preserving, completely positive
map) if Py is a positive semi-definite operator, satisfying Try, {Pp}=1.If {K}}; are
the Kraus operators of the A channel, we can write explicitly Py =Z; | K; XK; |,
where |K;) = K;Q1|'P).

We can now say that the channel A, is ¢-non-extremal, if it is possible to find
anon-zero &, for which PAq, + 8B¢PA¢ 20. See Supplementary Methods for an

alternative formulation of the ¢-non-extremality condition and its relation to the
well-known non-extremality condition due to Choi®”. In practice, if we want to
make most out of the bound in equation (10), we need to find the maximum values
of £, for which PA(/, + &_ra(pPA(P are still positive semi-definite operators. This is a

simple eigenvalue problem and therefore the bound can be obtained immediately.
Taking the dephasing model as an example, the Choi-Jamiotkowski

isomorphism of the corresponding A, channel PA(/, = ):1»2=1 | KU XKUp|

has a simple form:

0 0 7e?
P - 0 00 0 (26)
Ap 0 00 0 [
nel? 0 0 1

It is easy to check that Py  + 83¢PA¢ >0 provided | £|< \1-n?/1, hence using
equation (10) we arrive at the bound given in Table 1.

CE method as a semi-definite program. Here we show that the minimization
problem in equation (19) can be formulated as a simple semi-definite program.
Let the channel A, be a map from a d;- to a d,-dimensional Hilbert spaces
with Kraus representation involving k linear independent Kraus operators
(d,xd; matrices). Consider the following block matrix:

from reaching the fundamental quantum limit, as illustrated by the Vilg Ky K] K,
results of the GEO600 experiment. P 0 o
Even though the minimization over purification method* yields 0 %
in principle a tight bound, in practice there is no effective algorithm A= K 0 Vg .. 0 27)
to find a global minimum, and the only way to convince oneself : : : R
that one has achieved the global minimum is again to show that the Koy 0 0 .. Wi,
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where 1 is a dxd identity matrix. Positive semi-definiteness of the matrix A is
equivalent to the condition

ag = SKIK <ty

i

(28)

Minimizing the operator norm || & || is thus equivalent to minimizing ¢ subject to
A>0. Taking into account equation (18), the problem takes the form:

mint, subjectto:A>0,> K/ K; =iy KIK,.
h r (29)
) q
Since I;<1- =K;-iZ K j the matrix A is linear in h and the problem is thus a semi-
definite program with the resulting minimal ¢ being the minimal operator norm
[l |I. For the purpose of this paper, we have implemented the program using the
CVX package for MatlabS.
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