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Delivery of chemotherapeutic drugs in tumour
cell-derived microparticles
Ke Tang1,2,*, Yi Zhang1,*, Huafeng Zhang1, Pingwei Xu1, Jing Liu1, Jingwei Ma3, Meng Lv1, Dapeng Li1,

Foad Katirai1, Guan-Xin Shen3, Guimei Zhang1, Zuo-Hua Feng1, Duyun Ye2 & Bo Huang1,4

Cellular microparticles are vesicular plasma membrane fragments with a diameter

of 100–1,000 nanometres that are shed by cells in response to various physiological and

artificial stimuli. Here we demonstrate that tumour cell-derived microparticles can be used as

vectors to deliver chemotherapeutic drugs. We show that tumour cells incubated with

chemotherapeutic drugs package these drugs into microparticles, which can be collected and

used to effectively kill tumour cells in murine tumour models without typical side effects. We

describe several mechanisms involved in this process, including uptake of drug-containing

microparticles by tumour cells, synthesis of additional drug-packaging microparticles by these

cells that contribute to the cytotoxic effect and the inhibition of drug efflux from tumour cells.

This study highlights a novel drug delivery strategy with potential clinical application.
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T
he selective delivery of chemotherapeutic drugs to tumour
cells is a major challenge in cancer chemotherapy. Recent
studies show that packaging clinically approved drugs into

nanoscale vesicular vehicles (10–100 nm in diameter) can
effectively deliver chemotherapeutic drugs to tumour sites,
leading to improved pharmacokinetic efficiency and therapeutic
efficacy1,2. Nonetheless, these drug-loaded artificial nanoparticles
have several disadvantages. First, nanometre-scale materials, as
nonself components, are usually toxic and may cause adverse
effects, for example, by activating oxidative stress pathways2–7;
second, micelles are of inadequate stability in the blood stream;
third, co-encapsulation of more than one drug can result in
batch-to-batch variability in the drug load; and fourth, the cost
of assembly of nanoparticles is expensive, especially if they
contain engineered antibodies or aptamers. Notwithstanding
these defects, the development of advanced nanoparticle drug
carriers is currently vigorously pursued in the field of cancer
therapeutics1,7. However, one facet or direction, often overlooked,
is the existence and efficacy of natural counterparts to these
artificial nanoparticles.

Cells are capable of generating various vesicles of different sizes
but whether these cell-derived microvesicles are suitable for drug
delivery remains unclear. In response to various stimuli, cells may
change their cytoskeletal structure and result in the encapsulation
of cytosolic elements by the plasma membrane that are then
released into the extracellular space. These specialized subcellular
vesicles with a diameter of 100–1,000 nm are called microparticles
(MPs)8,9. Wolf first observed MPs from activated blood platelets
in 1967 and described them as pro-coagulant ‘dust’10. Since
then, it has progressively become more evident that MPs can be
derived from almost all cell types and have crucial roles under
physiological or pathophysiological conditions8,11. MPs not only
contain messenger molecules, enzymes, RNAs and even DNA,
but also are capable of transferring these bioactive molecules from
one cell to another12–15. Thus, functionally, MPs appear to act as
vectors delivering molecular messages between cells. Considering
these similarities of MPs with nanoparticles in size, structure and
vector function, it is reasonable to hypothesize that MPs may
be useful as endogenous natural vehicles to deliver chemo-
therapeutic drugs.

This study demonstrates that MPs, derived from apoptotic
tumour cells, can package and deliver chemotherapeutic drugs to
tumour cells, thereby, leading to the timely death of the tumour
cells without typical drug-associated side effects.

Results
Development of tumour cell-derived drug-encapsulating MPs.
We first tested whether apoptotic tumour cells, induced by
chemotherapeutic drugs, could produce drug packaging MPs. For
this purpose, carboxyfluorescein succinimidyl ester (CFSE)-
stained mouse hepatocarcinoma tumour cell line H22
were incubated with 10 mgml� 1 methotrexate (MTX) and then
irradiated with ultraviolet light for further apoptosis induction.
The MPs were isolated16,17, and analysed by flow cytometry.
Apoptotic tumour cells could indeed release considerable MPs
(Fig. 1a, left). As large as 3� 105 MPs were yielded from 5� 106

tumour cells (Fig. 1a, right). These MPs were not generated owing
to background noise or nonspecific events (Supplementary
Fig. S1), and showed membrane structures with 100–1,000-nm
sizes as judged by electron microscopy (Fig. 1b). Such membrane
structures were further confirmed by western blot (Supple-
mentary Fig. S2) and by flow cytometric analysis of MPs derived
from Raw 264.7 cells (Supplementary Fig. S3). Given the
fluorescent nature of doxorubicin18, we employed doxorubicin
fluorescence to determine whether the drug is packaged into the

released MPs. Doxorubicin was clearly shown to be encapsulated
by MPs (Fig. 1c). Moreover, high-performance liquid chromato-
graphy (HPLC) analysis showed that the different concentrations
of doxorubicin or MTX in MPs were owing to drug doses
(Fig. 1d, Supplementary Fig. S4). Besides H22 cells, the human
ovarian cancer tumour cell line A2780 also produced MPs after
the treatment by cisplatin (Fig. 1a) or doxorubicin (Fig. 1c),
suggesting that tumour cells may indeed generate drug-
encapsulating MPs in response to chemotherapeutic treatments.

Tumour cell-derived drug-encapsulating MPs are cytotoxic. To
verify whether drug-encapsulating MPs are cytotoxic to tumour
cells, low or high concentrations of MTX (1 or 10 mgml� 1) were
added to the cultured H22 cells (5� 106) 1 h before ultraviolet
irradiation. After 12 h, the released MTX-encapsulating MPs were
incubated with H22 cells. Both high and low concentrations of
MTX–MPs could induce tumour cell death after 48 or 72 h
(Fig. 1e, Supplementary Fig. S5). Consistently, the higher drug
dosage resulted in MP packaging more drug molecules. MPs from
100 mgml� 1 doxorubicin-treated H22 cells showed much stron-
ger mean fluorescence intensity (MFI) than that from 10 mgml� 1

doxorubicin-treated H22 cells (1,316 versus 623). In addition,
other drugs, such as cisplatin and hydroxyl camptothecin, and
other cell lines, including A2780, B16, HL60 and EL4, were also
tested, and the generated drug-packaging MPs also resulted in the
similar results. Interestingly, the addition of MPs, generated from
1 mg MTX-treated H22 tumour cells, cultured in 1ml medium,
resulted in obviously discernible tumour cell killing, whereas the
addition of 0.05 mg MTX to the same culture media had no
discernible cytotoxic effect (Fig. 1e, Supplementary Fig. S5).
Furthermore, 0.6 mg MTX only killed around 2% H22 tumour
cells in a 1ml medium, whereas MPs packaging 0.6 mg MTX
(based on HPLC results) induced around 23% tumour cell death
(Supplementary Fig. S6), suggesting that tumour cell-derived
drug-encapsulating MPs might have a higher tumour-killing
efficacy or efficiency than conventional chemotherapeutic drugs.

To further assess this pharmacological efficacy, the stability of
MPs was tested. We found that doxorubicin-encapsulating MPs
were at least stable for 1 week at 4 1C (Fig. 1f,g), and such stored
MPs possessed a similar capability to kill H22 cells (Fig. 1e).
In addition, MPs were found to be resistant to acidic and alkaline
environments, light, shaking and high temperatures (room tem-
perature or 37 1C), but not to SDS or proteinase K
(Supplementary Fig. S7). As MPs were generated from apoptotic
tumour cells, we also analysed cell death molecules by using
western blot or DNA gel. Consistent with the previous report19,
we found that MPs contained a panel of natural biomolecules,
such as cytochrome c, caspases 3 and 9, histones and DNA pieces
(Supplementary Fig. S8). Together, these findings demonstrated
that tumour cell-derived MPs are indeed capable of encapsulating
chemotherapeutic drug, are cytotoxic to tumour cells and more
effective than direct treatment with the same drug on a dose-
per-dose basis.

MTX-encapsulating MPs inhibit ascites hepatocarcinoma
growth. To address whether MPs could be used for anticancer
therapy in vivo, we injected MTX-encapsulating MPs intrave-
nously (i.v.) or intraperitoneally (i.p.) into mice. Two milligram
MTX were added to 2ml culture media with 2� 107 H22 tumour
cells 1 h before ultraviolet irradiation. Each of the prepared MPs
was then used for one mouse per package. Collectively, mice were
treated once per day for 6 days. Compared with simple MPs or
PBS control, MTX–MPs did not induce any hair and/or weight
changes in the mice or adversely affect liver or kidney functions
(Fig. 2a). In contrast, twice repeated i.v. or i.p. injections of
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2 mg g� 1 MTX produced typical side effects (Fig. 2a). We then
assessed the therapeutic efficacy of MTX-packaging MPs in a
murine hepatocarcinoma ascites model. The i.p. injection of H22

cells formed obvious ascites within 10 days. The next day after the
i.p. tumour cell inoculation, the mice were given treatments of
MPs once per day for 5 days. On day 10, the mice were killed and
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Figure 2 | MTX-packaging MPs inhibit peritoneal H22 cell growth without typical side effects. (a) MTX-encapsulating MPs did not adversely impact

liver or kidney functions. 2� 107 H22 cells were incubated with 2mg MTX in 2ml culture medium for 1 h before ultraviolet irradiation, and the isolated MPs

were injected i.v. or i.p. to one mouse once per day for 6 days (n¼8 for each group). Serum levels of glutamic-pyruvate transaminase and creatinine were

detected. MPs from sole UBV-treated H22 cells and the two time injection of 2 mg g� 1 MTX were used as controls. Bars correspond to mean±s.d. The data

shown were representative of three reproducible experiments. (b,c) MTX–MPs inhibited tumour growth. H22 cells were i.p. injected mice (n¼ 12 for each

group). On day 1, MPs from 1mgml� 1 MTX-treated H22 cells or UBV-treated cells were i.p. injected to the mice once per day for 10 days. Or, single MTX

(0.5mg g� 1) was i.p. injected to mice once per day for 5 days. On day 11, half the mice in each group were killed and the volume of ascites was measured

(b). The rest of the mice were used for long-term survival observation (c). Data are representative of three independent experiments. Po0.001, MTX.MP

group compared with PBS control group.
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Figure 1 | MPs are cytotoxic after encapsulating chemotherapeutic drugs. (a) Apoptotic tumour cells released a large number of MPs. CFSE-labelled H22
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scanning fluorescence microscope. Doxorubicin was shown as the red colour. Scale bar, 2 mm. (d) The concentration of doxorubicin in MPs was measured

by HPLC. Data are the representative of three independent experiments. Bars correspond to mean±s.d. (e) Drug-encapsulating MPs were cytotoxic to
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0.05mgml� 1 MTX were observed after 72 h. Scale bar, 25mm. (f,g) Chemotherapeutic drug-encapsulating MPs were stable. MPs from MTX-treated H22

tumour cells were stored at 4 1C for 7 days, and then added to H22 cell culture medium for cytotoxicity assay. Scale bar, 25 mm (f). MPs from doxorubicin-

treated H22 cells or untreated cells as control were stored at 4 1C for 7 days and the stability of these MPs was analysed by flow cytometry (g). MPs

without doxorubicin served as control and doxorubicin-packaging MPs were reflected by the positive dot plots. In this figure, 10,000–20,000 events were

collected for flow cytometric analysis.
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the volume of ascites measured. The results showed that the
volume of ascites was significantly reduced in the mice treated
with MTX–MPs compared with control groups (Fig. 2b). Con-
sistently, MTX–MPs-treated mice had much longer survival time
(Fig. 2c), clearly suggesting that MTX-encapsulating MPs inhibit
tumour growth without typical side effects in a murine hepato-
carcinoma ascites model.

Cisplatin-encapsulating MPs inhibit ovarian cancer growth. To
further confirm that tumour cell-derived chemotherapeutic drug-
encapsulating MPs have an anticancer activity, human ovarian
cancer in severe combined immunodeficient (SCID) mice was
also tested by i.p. injection of A2780 cells. Six hundred micro-
grams cisplatin was added to 2-ml culture media with 2� 107

A2780 cells 1 h before ultraviolet irradiation. The MPs formed
were then used for one mouse each. Similar to the above
MTX–MPs, the administration of cisplatin–MPs continuously for
5 days did not affect liver and kidney functions of SCID mice
either. In order to test their therapeutic efficacy, cisplatin–MPs
were administered to mice 5 days after A2780 cell inoculation.
After 14 days, an additional treatment was administered once per
day for 5 days. After 30 days, SCID mice were killed and the
tumour growth evaluated. As shown in Fig. 3a, almost no tumour
nodes were observed in the cisplatin–MP group. In contrast, a
large number of tumour nodes was seen in control–MP group.
Consistently, cisplatin–MP-treated mice had much longer survi-
val times (Fig. 3b). Moreover, MPs packaging cisplatin and
paclitaxel almost completely suppressed A2780 tumour growth in
nude mice (Supplementary Fig. S9). Therefore, A2780
cell-derived MPs inhibit human ovarian cancer growth in SCID
mice by packaging cisplatin or cisplatin/paclitaxel.

Tumour cells take up chemotherapeutic drug-packaging MPs.
To elucidate the mechanism by which drug-encapsulating MPs
efficiently mediate tumour cell killing, we first asked whether
the interaction between MPs and tumour cells were required for
tumour cell killing. MTX–MPs were incubated in culture media
for 48 h and separated from the media by centrifugation. Inter-
estingly, only the separated MTX–MPs, but not the correspond-
ing supernatants or the supernatants from the last MPs washing,
were cytotoxic (Fig. 4a), suggesting that chemotherapeutic drugs
are within and not discharged from MPs. This was in line with
the previous result of Fig. 1d, which showed that MPs were very

stable. Here, it was further observed that MPs were Triton X-100
resistant (Fig. 4b, Supplementary Fig. S7), hinting a direct inter-
action between tumour cells and MPs. In addition, MPs derived
from CFSE-stained H22 cells were incubated with PKH26-stained
H22 cells. It was found that the green MPs were efficiently taken
up by red H22 cells (Fig. 4c) and around 54% H22 cells took up
MPs (Fig. 4d). To test this result in vivo, doxorubicin-packaging
MPs were i.p. injected into mice that previously received an
injection of H22 cells. About 11.8% of the tumour cells were
found red fluorescent and most of these red cells could be stained
with Annexin V, the marker of cellular apoptosis (Fig. 4e).
In parallel, after the injection of MTX-packaging MPs to mice
peritoneal H22 tumour for 5 days, peritoneal immune cells were
isolated for apoptotic analysis. As shown in Fig. 4f, drug-
packaging MPs effectively induced the apoptosis of F4/80þ

macrophages but had no effect on CD3þ T or CD19þ B cells.
Consistently, H22 MPs were strongly taken up by H22 cells, but
not by T or B cells in vitro (Supplementary Fig. S10a,b). As H22
cells are hepatocyte derived, primary liver cells were additionally
assessed to take up MPs. It was found that the drug-packaging
MPs were weakly taken up by and had minor effect on the
primary liver cells (Supplementary Fig. S11a,b), suggesting that
MPs are efficiently taken up by tumour cells.

Efficiency of MP-mediated drug delivery. To clarify whether
drugs within MPs are delivered more efficiently to tumour
cells than those not packaged into MPs, MPs from 100-mg dox-
orubicin-treated 1� 107 tumour cells in 4-ml culture media
were prepared, and then 10% of the prepared MPs and the cor-
responding 10 mg doxorubicin were added to 1� 107 tumour cells
in 4-ml fresh media, respectively. After 4 h, cells were collected for
flow cytometric analysis. In the MP group, tumour cells effec-
tively took up MPs and showed strikingly high fluorescence. In
contrast, in the 10-mg doxorubicin group, although tumour cells
showed positive fluorescence the relative intensity was much
weaker (Fig. 4g). To clarify whether MPs have the same efficiency
in vivo, doxorubicin-packaging MPs and the same dose-
containing doxorubicin as MPs (according to HPLC results) were
i.p. injected into mice that previously received an injection of H22
tumour cells. After 12 h, peritoneal tumour cells were isolated and
detected by flow cytometry. The result showed that compared
with simple drug administration, MPs resulted in an eightfold
increase in the delivery efficiency of doxorubicin to tumour cells

Control.MPa b Cisplatin.MPCisplatin.MP PBS
CisplatinControl.MP

100

80

60

40

20

0
15 20 30 40 50

Time after inoculation (days)

60 70 80

S
ur

vi
va

l r
at

io
 (

%
)

Figure 3 | Cisplatin-packaging MPs inhibit ovarian cancer growth in SCID mice. (a,b) A2780 cells were i.p. injected to SCID mice (n¼ 12 per group).
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representative of three independent experiments. Po0.001, Cisplatin.MP group compared with PBS control group.
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(Supplementary Fig. S12). Taken together, these data suggest that
MPs may concentrate the dispersive chemotherapeutic drug
molecules and directly deliver them to tumour cells.

Drug-encapsulating MPs induce domino-like tumour cell
killing. The concentration of drugs in tumour cells may explain
why tumour cells were killed by MPs. However, it left unex-
plained why relatively few MPs could kill many tumour cells, as
shown in Fig. 1. One possibility was that tumour cells killed by
MTX–MPs form new MTX-packaging MPs, which are also
cytotoxic. To test this hypothesis, H22 cells were incubated with
MTX–MPs. After washing, tumour cells were put into new cul-
ture media and the new MPs were isolated. As expected, the
second generation of MPs also induced H22 tumour cell death
(Fig. 5a). As additional corroboration, when H22 tumour cells
were treated with doxorubicin, it was found that doxorubicin was
included in the second generation of MPs (Fig. 5b). Moreover,
the third generation of MPs still contained the original
drug and had cytotoxic activity against H22 cells (Fig. 5a,b).

Thus, chemotherapeutic drug-encapsulating MPs may generate a
domino-like tumour killing effect.

Tumour cell-derived MPs impede drug efflux. To further
elucidate MP-mediated killing efficiency, we turned our attention
to whether MPs acted as a biomaterial that influences drug-
mediated tumour cell killing. MPs were found to be resistant to
the effects of Triton X-100 (Fig. 4b), suggesting that lipid raft
structure is involved in membrane origination of MPs. Interest-
ingly, lipid rafts are known to be connected to drug efflux20–22,
begging the question whether MPs might influence drug efflux in
tumour cells. Therefore, H22 tumour cells were incubated with
H22 tumour cell-derived MPs for 12 h, followed by the addition
of 0.8 mgml� 1 doxorubicin for 6 h, and then the supernatant was
replaced with the fresh medium for another 6-h culture. The drug
efflux by tumour cells was then evaluated by flow cytometric
analysis of intracellular fluorescent intensity. The results in the
form of a decrease of MFI from 1,377 to 593 showed that H22
cells can effectively evacuate doxorubicin within 6 h (Fig. 6a).
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However, MPs strikingly inhibited this decrease by MFI from
1,299 to 1,086 (Fig. 6a). Moreover, the simultaneous addition of
MPs and doxorubicin also impeded the decrease of MFI from
1,259 to 788 (Fig. 6a), suggesting that MPs might prevent the
efflux of chemotherapeutic drug by tumour cells. In line with this
result, we found that pretreatment of H22 tumour cells by MPs
enhanced MTX-induced tumour cell apoptosis (Fig. 6b).
Therefore, tumour cell-derived MPs were deemed capable of
impeding drug efflux, leading to increased tumour cell sensitivity
to chemotherapeutic agents.

MPs deliver drugs to solid tumour via intravenous injection.
Although MPs were shown to effectively deliver drugs to local
peritoneal tumours, it still remained to explore whether MPs were
capable of delivering chemotherapeutic drugs to solid tumours.
For this purpose, mice were subcutaneously inoculated with H22
cells. When tumour growth reached 5� 5mm2 in size (5 days),
mice were treated with MTX-packaged MPs via tail vein injection.
After 7 days continuous injections, tumour growth was shown to
be suppressed, compared with the control groups (Fig. 7a).

Moreover, PKH26-conjugated MPs were i.v. injected to H22
tumour-bearing mice, and tumour was removed for fluorescence
detection 4 h later. We found that MPs could be selectively
recruited to the tumour site (Fig. 7b,c), suggesting that MPs may
deliver chemotherapeutic drugs to solid tumours via the circu-
latory system. We also evaluated the influence of circulating MPs
on coagulation. The pro-coagulant state of the mice was assessed
after injection of MPs at different time points. We found that the
prothrombin time, activated partial thromboplastin time and
fibrinogen were not altered by MP injection (Supplementary
Fig. S13).

Artificial nanoparticles, such as liposome-packaging drugs,
may have similar drug effects as tumour cell-derived MPs. MPs,
derived from 1mgml� 1 paclitaxel-treated 5� 106 H22 tumour
cells, and 60 mg liposome–paclitaxel generated a comparable
cytotoxicity to H22 cells (Supplementary Fig. S14). However, a
tenfold increase in dosage applied in vivo resulted in different
influences on mice weight. Six hundred micrograms liposome–
paclitaxel caused a marked weight loss. Even 300 mg also nega-
tively affected mice weight (Supplementary Fig. S14). According
to these results, 10-time MPs or 300 mg liposome–paclitaxel were
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i.v. injected to H22 tumour-bearing mice once per day for 7 days.
Although the liposome–paclitaxel treatment inhibited tumour
growth, the injection of MPs resulted in higher treatment
efficiency (Supplementary Fig. S14).

Actin filaments affect the release and uptake of MPs. To better
understand drug-packaging MP-mediated tumour cell killing, the
mechanism involved in tumour cell release and uptake of MPs
was investigated. The cytoskeleton has important roles in cellular
endocytosis and exocytosis23–26, leading to the possible
requirement of cytoskeletal proteins for the release and uptake
of MPs by tumour cells. When H22 cells were treated with
cytochalasin D, an inhibitor of F-actin polymerization, actin
filament formation was inhibited, resulting in decreased MP
release, induced by ultraviolet irradiation (Fig. 8a). Furthermore,
when H22 cells were treated with blebbistatin, the inhibition
of actin filament motility also led to decreased MP release
(Fig. 8a). When PKH-26-stained H22 cells, after treatment with
cytochalasin D or blebbistatin, were incubated with CFSE-labelled
MPs, to determine the uptake of MPs by tumour cells, an
unexpected increase in the uptake of MPs by H22 tumour cells
were found (Fig. 8b, c). Similar results were obtained from A2780
tumour cells. It is perhaps safe, therefore, to conclude from these

findings that myosin II-triggered, actin filament-generated
tension might mediate the release of MPs by tumour cells,
whereas a soft microfilament cytoskeleton is perhaps more
suitable for MP uptake. Whether this uptake is mediated through
endocytosis was also investigated. The endo/lyosome tracker was
used to merge the fluorescence of MPs. The result, however, did
not show colocalization (Supplementary Fig. S15). In parallel, the
endoplasmic reticulum tracker and Golgi tracker were also used
for the detection. Similarly, MPs appeared not to interact with
endoplasmic reticulum or Golgi (Supplementary Fig. S15). These
data suggest that tumour cells take up MPs independent
of endocytosis.

Discussion
The biggest limitation of anticancer chemotherapy lies in its
adverse effects27,28. To resolve this problem, innovative
approaches to deliver chemotherapeutic agents are needed.
As the carrier to deliver drugs, MPs have unique advantages:
first, MPs are formed from cellular membranes, making them
therefore much safer and self-friendlier; second, the preparation
of drug-packaging MPs are very simple and easily manipulated;
and third, packaging MPs with drugs is a general process and not
restricted by physicochemical properties of drugs. The data
gathered in this study reveal another critical feature of MP
delivery. The use of MPs for the packaging and delivery of
chemotherapeutic drugs reduces much of the toxicity of such
drugs. The reasons for this advantage may be multiple and not
reducible to one simple explanation. Physiological capillary gaps
are around 5–8 nm (ref. 29), which prevents 100–1,000 nm MPs
from reaching normal tissues and causing damage. Moreover,
MPs were found to be very stable and resistant to detergent
Triton X-100 consistent with previous reports that lipid rafts
might be the main membrane component of MPs30,31. However,
more important for the purposes of this paper it promises simple
effective storage of drugs and innocuous therapeutic inter-
ventions in dealing with tumours. Therefore, MPs may well
represent a new and more patient friendly approach to deliver
chemotherapeutic agents.

Recent studies highlight that lymphocytes, neutrophils, NK
cells and even tumour cells can live temporarily within tumour
cells, a phenomenon called cell cannibalism or cell-eat-cell32,33.
Therefore, it might be easy for tumour cells to take up MPs, even
though the detailed mechanisms remain unclear. Intriguingly,
this uptake is not mediated through endocytosis pathways, so that
how MPs release chemotherapeutic molecules within tumour
cells is still elusive. Furthermore, regardless of the homology
between MPs and tumour cells, it is inevitable that MPs will
be taken up by phagocytes, such as macrophages15,34,35. This,
however, might actually be beneficial to cancer treatment, because
tumour-associated macrophages have very important roles in
tumour development by promoting neoangiogenesis, remodelling
tumour microenvironment and dampening the immune response
to tumours36–39. In this study, we observed that peritoneal
macrophages took up drug-packaging MPs and then died.
Whether and how such killing of tumour-associated
macrophages synergizes with the killing of tumour cells by
drug-packaging MPs to generate better therapeutic effects is
currently under study.

Peritoneal neoplasia can originate de novo from the peritoneal
tissues as primary tumours40,41. However, in most cases, it is
derived from the invasion of adjacent tumours or metastasis of
remote tumours42,43. Although the peritoneal metastasis of colon,
liver and pancreatic cancers is not common, clinical ovarian
cancer is almost always accompanied by peritoneal metastasis
when diagnosed44,45. In the present study, drug-packaging MPs
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were used to treat peritoneal cancers inoculated with either
murine hepatocarcinoma or human ovarian cancer tumour cells.
Striking therapeutic efficiencies were observed, in the form of
total inhibition of tumour growth in part tumour-bearing mice,
even when the packaged drug quantity and the doses of
administered MPs were not optimal. H22 cells grow very
quickly in the peritoneal cavity, which results in the observed
ascites on day 5 and peaked on day 8 or 9, then maintaining this
level owing to space limitations. The single MTX treatment has
therapeutic effect only at the beginning, which delays the visible
ascites 1 or 2 days, but the ascites came back soon. This very
malignant tumour model is chosen in order to emphasize
the efficiency of MP-based therapeutics. On the other hand, the
difference between normal (5–8 nm) and tumour capillary
permeability (100–780 nm)29,46,47 implies that MPs might be
used to deliver drugs to solid tumours by blood flow. This
study additionally provides evidence that the delivery of
chemotherapeutic to solid tumours by MPs is feasible via direct
intravenous injections. Although MPs were found to migrate to
the tumour site and be taken up by tumour cells after i.v.
injection, the complex and intricate dynamics of such drug-
packaging MPs in the blood stream still remains to be elucidated.

Previous works by Jain and colleagues46 have demonstrated
that the increases in tumour vascular permeability form the basis

for nanoparticle extravasation and drug delivery. Recently, works
by Dass and colleagues48 have shown that chitosan-based delivery
systems are efficient for cancer therapy. Along with these studies,
current advances in nanotechnology have produced synthetic
nanoparticles to encapsulate and release a pre-programmed
diversity of therapeutic measures against cancers1,2,4,49–51. These
artificial materials are, however, known to often induce immune
responses, leading to minor or even serious adverse effects3–7.
Furthermore, nanoparticles range in size from 20 and 50 nm
(refs 2,49), limiting the number of chemotherapeutic molecules
that can be packaged. Besides, polymeric micelle systems
generally suffer from poor water-soluble drug-incorporation
efficiencies. This is because of the small size and hence large
surface area of drugs, which promote drug loss into the aqueous
phase during particle formation. In contrast, water-soluble drugs
are ideal for MPs packaging. As natural self-components, MPs do
not induce autoimmunity and range in size from 100 to 1,000 nm,
guaranteeing the efficacy of MPs as therapeutic vector to package
needed and sufficient enough therapeutic agents. More
importantly, this present study indicates that MPs, as natural
biomaterials, possess unique merits, such as domino-like killings,
where drug-packaging MPs can trigger the formation of new
drug-packaging MPs after entering into tumour cells, and
inhibiting the efflux of chemotherapeutic drug by tumour cells.
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The latter has important implications for cancer therapy with
regard to multidrug resistance52,53. This study does not identify
or map the exact pathways through which MPs impede the efflux
of chemotherapeutic drugs. However, one possibility is that,
owing to their compatibility to tumour cell membranes, MP
membranes might be integrated into tumour cell membranes,
resulting in the blockage of drug-efflux pumps. Further study is
required to clarify this.

In summary, the data in this study clearly show that tumour
cell-derived MPs, by virtue of their biological formation and
subsequent biochemical features, can be used as a carrier to
deliver therapeutic agents to tumour cells, leading to effective
tumour cell killing with reduced adverse effects. This study may
open a new aspect of MP biology and may have discovered a new
way for chemotherapeutic drug delivery in cancer therapy.

Methods
Mice and cell lines. Female BALB/c and BALB/c-SCID mice, 6- to 8-week-old,
were purchased from Centre of Medical Experimental Animals of Hubei Province
(Wuhan, China) for studies approved by the Animal Care and Use Committee of
Tongji Medical College. Murine hepatocarcinoma cell line H22 and human ovarian
cancer cell line A2780 were purchased from China Centre for Type Culture Col-
lection (CCTCC, Wuhan, China), and cultured according to the guidelines given.

Generation and isolation of MPs. Tumour cells were treated with chemother-
apeutic drug MTX, hydroxyl camptothecin or cisplatin, and then exposed to
ultraviolet irradiation (UBV, 300 Jm� 2) for 1 h. After 12 h, supernatants were used
for MP isolation as described before16,17. Briefly, supernatants were first
centrifuged for 10min at 600 g to get rid of cells and then centrifuged for 2min at
14,000 g to remove debris. At last, the supernatant was further centrifuged for
60min at 14,000 g to pellet MPs. The pellets were washed three times and
resuspended in culture medium for the following experiments.

MP counting. A flow cytometry-based method was used to count the number of
MPs. After centrifugation, the MPs were suspended with PBS that was prefiltered
through 0.1 mm filter and passed through 1 mm filter to further exclude background
noise or nonspecific events. The MPs mixed evenly with 3 mm latex beads (LB-30,
Sigma, St Louis, MO) with a known number. For flow cytometric analysis, 0.8 mm
deep-blue dyed-latex beads (L1398, Sigma) were first used for gating and voltage
adjustment, as such beads are fluorescent and can be detected on FL4 channel.
When the mixture was analysed by flow cytometry, each LB30 bead formed a dot in
the gate of the large-size population. If 10,000 counts of LB30 were collected, the
number of MP can be calculated with formula: N¼ 10,000� (MP percentage/LB30
percentage).

Transmission electron microscope. MPs were passed through 1 mm filter and
fixed at room temperature for 60min with 4% paraformaldehyde in 0.01M PBS.
After washing with PBS, the preparations were postfixed in 1% OsO4 (Taab) for
30min. After rinsing with distilled water, the pellets were dehydrated in graded
ethanol, including block staining with 1% uranylacetate in 50% ethanol for 30min,
and embedded in Taab. After overnight polymerization at 60 1C and sectioning for
EM, the ultrathin sections were analysed with a JEM1010 electron microscope
(JEOL, Japan).

Assay of MPs packaging chemotherapeutic agents. Doxorubicin, a red-fluor-
escent chemotherapeutic drug, was used to treat H22 or A2780 tumour cells. The
released MPs were isolated and observed under a two-photon fluorescent micro-
scope (LSM 710 and ConfoCor 3 systems, Carl Zeiss, Germany) to confirm the
formation of MPs packaging chemotherapeutic agents.

High-performance liquid chromatography. The concentration of chemother-
apeutic drug in MPs was measured by HPLC. Briefly, H22 tumour cell-derived,
doxorubicin-packaging MPs were processed by lysis buffer, proteinase K, phe-
nylmethylsulphonyl fluoride and DNase I according to previous description54. The
HPLC system consisted of a 1525 Binary HPLC Pump, a 717 Plus Autosampler and
a 2475 Multi-Wavelength Fluorescence Detector (Waters Corporation, Milford,
CT). Chromatography was performed on a column (4.6� 150mm2, particle size
5 mm). The effluents were monitored at an excitation wave length of 480 nm
and an emission wave length of 560 nm at 40 1C. Detection and integration of
chromatographic peaks was performed using Empower 2 software (Waters
Corporation).

Cytotoxicity assay of drug-packaging MPs. Drug-packaging MPs were prepared
and added to the cultured tumour cells. The cells were observed under a micro-
scope at different time points. In some cases, cells were collected and stained with
annexin V and propidium iodide for apoptosis detection by a flow cytometer.

Labelling of MPs. Isolated MPs were labelled with a red-fluorescent cell linker
(PKH26, Sigma) according to the manufacturer’s protocol.

Flow cytometry. A BDTM LSR II flow cytometer (BD) was used to do the flow
cytometric analysis of the MPs in samples. The instrument settings and MP gating
were adopted from previous works55. Samples were diluted in 1:30 with 1.2-mm
pore size membrane-filtered PBS in order to reduce background event numbers. A
microbead of 3 mm in diameter (Sigma-Aldrich) was used to select optimal
instrument settings and MP gate. Total event counts of MPs were determined
within the MP gate.

Animal model and MP treatment protocol. 1� 105 H22 murine hepatocarci-
noma tumour cells (BALB/c background) were i.p. injected into BALB/c mice.
Seven days later, the growth of H22 tumour cells formed hepatocarcinoma ascites.
To treat this peritoneal tumour, 2mg MTX was added to 2� 107 H22 tumour cells
in 2ml culture medium and the prepared MTX-packaging MPs were then admi-
nistered to one mouse per packaged MPs. On day 2 after H22 tumour cell
inoculation, mice were received MTX-packaging MPs by i.p. injection once per day
for 5 days.

For the human ovarian cancer murine peritoneal model, BALB/c-SCID mice
were i.p. injected with 5� 106 A2780 human ovarian cancer tumour cells. On day 2
after the inoculation, MPs generated from 2� 107 A2780 cells treated with cisplatin
(300 mgml� 1) were i.p. injected to mouse once per day for 5 days. After day 14, an
additional treatment was administered once per day for 5 days. On day 30, half the
mice were killed for tumour detection and the left mice were fed for the long-term
survival study.

In selected cases, drug-packaging MPs and paclitaxel–liposome were i.v. injected
to mice. Paclitaxel–liposome, which was approved by the State Food and Drug
Administration of China (No. H20030357), was purchased from Nanjing Si Ke
Pharmaceutical Co., Ltd. (Nanjing, China) as freeze-dried powder in glass vials
containing 30mg of active drug.

Hoechst 33342 uptake assay. Isolated MPs treated with or without 0.5% Triton
X-100 were incubated with Hoechst 33342 for 12 h. MPs were isolated again
resuspended in 30ml PBS buffer. Suspensions were smeared on a glass slide and
photographed under a fluorescence microscope.

Assay of tumour cells taking up MPs in vitro. CFSE-labelled H22 cells treated
with UBV irradiation (300 Jm� 2) were cultured for 24 h. MPs were isolated from
the supernatant, and then incubated with PKH 26-stained H22 cells for 20 h. Cells
were observed by two-photon confocal microscope or analysed by flow cytometry.

Peritoneal H22 tumour cell isolation. 3� 105 H22 tumour cells were i.p. injected
into BALB/c mice. Peritoneal tumour cells were isolated at different time points.
Briefly, peritoneal cells were harvested and centrifugated. After lysis of RBC, cells
were incubated on ice for 20min and then spun down at 500 revolutions per
minute. for 1min. This process was repeated twice and the spun cells were further
incubated for 2 h to get rid of adhesive cells. The cells left were used as H22 tumour
cells.

Mouse primary hepatocyte isolation. Mouse primary hepatocytes were isolated
from BALB/c mice using a two-step collagenase perfusion as described pre-
viously56. The viable hepatocyte population was further purified by a Percoll
gradient centrifugation57. Hepatocytes were resuspended and seeded onto collagen-
coated plates at 2� 105 cells per well in a 6-well plate in Williams’ E medium
(Invitrogen) with 10% FBS, insulin (0.5 mgml� 1, Sigma), dexamethasone (50 nM,
Sigma), streptomycin (0.1mgml� 1) and penicillin G (100Uml� 1) at 37 1C and
under 5% CO2.

Assaying second and third generations of MPs. H22 tumour cells were treated
with 250 mgml� 1 doxorubicin to prepare the first generation of MPs. Such dox-
orubicin-packaging MPs were incubated with fresh H22 tumour cells. After 6 h,
cells were washed and irradiated with UBV (300 Jm� 2). After another 24 h, the
released MPs packaging doxorubicin were detected with two-photon confocal
microscope or flow cytometry and called the second generation of MPs. In the
same way, the third generation of MPs were prepared.

Statistics analysis. Results were expressed as mean values±s.d. and interpreted
by repeated-measure analysis of variance or Kaplan–Meier analysis. Differences
were considered to be statistically significant when the P-value was o0.05.
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