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Overcurvature describes the buckling and folding
of rings from curved origami to foldable tents
Pierre-Olivier Mouthuy1,2, Michael Coulombier3, Thomas Pardoen3, Jean-Pierre Raskin2 & Alain M. Jonas1

Daily-life foldable items, such as popup tents, the curved origami sculptures exhibited in the

Museum of Modern Art of New York, overstrained bicycle wheels, released bilayered

microrings and strained cyclic macromolecules, are made of rings buckled or folded in

tridimensional saddle shapes. Surprisingly, despite their popularity and their technological

and artistic importance, the design of such rings remains essentially empirical. Here we study

experimentally the tridimensional buckling of rings on folded paper rings, lithographically

processed foldable microrings, human-size wood sculptures or closed arcs of Slinky springs.

The general shape adopted by these rings can be described by a single continuous parameter,

the overcurvature. An analytical model based on the minimization of the energy of overcurved

rings reproduces quantitatively their shape and buckling behaviour. The model also provides

guidelines on how to efficiently fold rings for the design of space-saving objects.
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B
iological phenomena such as the morphogenesis of guts1

and of some wavy petals and leaves2, or technological
objects such as stretchable electronic devices3, quasi-

periodic optical gratings4 or tridimensionally shaped responsive
polymer membranes5,6, are based on the controlled buckling of
thin plates and films. Likewise, rings buckle and fold in saddle
shapes: relevant technological, artistic and biological examples
have a diameter ranging from a few hundred nanometres to
metres, and comprise some of the so-called ‘2-second’ tents and a
variety of other popular foldable systems (Fig. 1a–c), curved
origamis (Fig. 1d)7, bicycle wheels of excessive spoke tension,
released bilayered microrings8 or confined stiff polymer rings like
DNA plasmids in vesicles9,10. Unlike classical origami that
proceeds by discrete steps, the folding of rings results from a
continuous evolution of their torsion and curvature. The stored
elastic strain energy can then be used for self-deployment from
flat, space-saving coils, as in light-weight foldable trekking items.

Despite the existence of these tridimensional ring structures at
very different length scales and their interest for technological
applications and art, they currently lack a direct and generic
analytical description capable of simplifying their design.
Although the instability of twisted elastic rods and rings is well
understood11,12, the tridimensional shape of closed systems to
which a given curvature is pre-set only raised interest recently.
Experimental examples are the saddling of bilayered nanorings of
various widths8 and the swelling of elastic polymer sheets with a
locally prescribed metrics5,6,13. These experiments were
complemented by simulations14 and theoretical models15–17 of
the buckling of disks or of thin annular surfaces. Analytical results
for the buckling of circular rings and arches are available, but only
for small and mostly in-plane deformations18–20. Analyses of the
out-of-plane buckling of rings and arches18,20,21 focus on the
values of critical loads and do not describe the general shape of
strongly buckled systems.

Here we concentrate on hoops and rings that fold or adopt
saddle shapes when imposed a curvature higher than the one of a
circle of identical length. Unlike previous work, we focus on a
compact analytical description of the general conformation of

these rings using the new notion of overcurvature O, for rings
having all cross-sectional dimensions negligible compared with
the ring perimeter. Therefore, we first compare experimentally
the buckling of closed rings of different cross-sectional shapes,
having diameters ranging from 10 micrometres to a few metres.
Next, we generate a new family of curves capable of describing the
general conformation adopted by buckled rings with a single
continuous parameter, the overcurvature O. We then provide a
quantitative analytical description of the general shape of
overcurved rings of finite cross-section by taking into account
the bending and torsional energies. Finally, we use this knowledge
to describe how to efficiently fold rings, and demonstrate the
folding of a ring into five superposed loops covering a total
surface 25 times smaller than the original ring. The model, which
is validated on the experimental data, provides an elegant and
simple designing tool for overcurved rings as different as a
lithographically processed microring or a macroscopic wooden
sculpture.

Results
A definition of overcurvature. The conformation of a buckled or
folded closed ring of small cross-section is described by the centre
line passing through the centre of gravity of its cross-section, and is
represented by a closed curve of equation r(s) where s is the arc
length coordinate. The centre line can also be defined mathemati-
cally by its local curvature k(s) and torsion t(s)22. Our analysis will
be restricted to untwisted rings having a centre line of constant
curvature k, and a locally variable torsion t(s) that integrates to zero
over the ring. Such rings of contour length L are said to be
overcurved when the local curvature k exceeds the curvature of a
circle of identical length by a factor O41, implying the presence of
internal stresses. For O¼ 1, the ring is a planar circle of radius
R0¼ k� 1¼ L/(2p). When an additional curvature is applied,

O9
L
2p

k4 1

An overcurved ring can thus be obtained by increasing its
curvature k while keeping its length L unchanged, or by increasing
its length at constant curvature. Experimental illustrations are given
in the next section.

Experimental overcurved structures. We built different over-
curved rings of various sizes (Fig. 2), using different materials,
cross-sections and overcurvation processes, and classified the
different structures according to their pre-set overcurvature
Op¼ Lkp/(2p). The pre-set curvature, kp, is the curvature that
would be spontaneously adopted if the overcurved ring was cut
(possibly still involving residual internal stresses as in the second
example below). The real curvature k of the ring is different, due
to deformation induced by its closure. Stated otherwise, if a little
segment of the ring were to be cut out and allowed to reach
mechanical equilibrium, its curvature would be kp, the pre-set
curvature; however, it is forced to sit in a ring of length L42p/kp.
Therefore, the segment deforms and takes a local curvature k
taken here as constant. The overcurvature of the ring is O¼kL/
(2p), whereas the pre-set overcurvature is Op¼kpL/(2p).

As first example (Fig. 2a), we made buckling rings consisting of
connected arcs of Slinky springs. We cut segments of length L in a
commercial Slinky spring of central radius R0, with L42pR0. The
pre-set curvature kp is R� 1

0 . Then, we connected the two ends of
the segments after having tangentially rotated one end to unfold
the arc, until the two ends went in contact with the same
orientation. This created overcurved rings of pre-set over-
curvature Op¼ L/(2pR0), which settle in a configuration of

Figure 1 | Overcurved rings are found in daily life. (a) Foldable ‘2-second’

tent. (b) Foldable football goal. (c) Foldable laundry basket. (d) Author-

made curved origami based on a circular crease pattern proposed by

Demaine et al.7
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minimum energy where forces and moments add up to zero,
leading to a balanced state of internal stresses (mechanical
equilibrium). This overcurvation process corresponds to varying
the length L while keeping the pre-set curvature R� 1

0 constant.
Typical conformations of the ring are shown in Fig. 2a: as Op

increases, the ring progressively bends and folds, then settles into
a triple loop for Op¼ 3.

A second example is provided by released bilayered microrings
(Fig. 2b). When two different materials are consecutively deposited
to form a linear beam in microfabrication processes, strain mis-
match across the layers causes internal stresses that force the beam
to bend out-of-plane after release, resulting in a spontaneous
curvature ks (refs 8, 23, 24). When the same process is used to
fabricate a bilayered ring of radius R (before release), the release
adds a supplementary curvature ks perpendicular to the original

one (1/R), which amounts to overcurve the ring with a pre-set

overcurvature Op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðksRÞ2

q
(Supplementary Methods;

Supplementary Fig. S1). Bilayered microrings of different radius
R were produced by deposition and microlithography25, and
rectangular beams of identical width and vertical composition
were processed in order to determine ks, which was measured to
be 1/90mm� 1 by scanning electron microscopy. The ring
conformations after release are shown in Fig. 2b; the analogy
with the connected arcs of the Slinky spring is obvious, although
the close presence of the substrate tends to hinder large
deformations during annealing.

Creased paper rings are a third example of overcurved structures
(Fig. 2c). In curved origami, paper is creased along closed curved
paths, resulting in the out-of-plane bending of the folding path
due to torsion. Simultaneously, the conservation of arc length by
the two sides of the crease imposes an increase of the curvature
of the crease by a factor Op¼ 1/cos(d/2)26,27, where d is the
angle between the normals to the two sides of the crease
(Supplementary Methods; Supplementary Figs S2 and S3;
Supplementary equation S19). We creased a flat circular ring of
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Figure 2 | Different overcurvation processes can be used to generate overcurved rings. (a) Overcurved closed arcs of a Slinky-like spring (the thickness t

of the beam is 2mm). (b) Scanning electron microscopy pictures of Al/Si3N4 bilayered microrings after release from a silicon oxide substrate (the scale bar

is 100 mm). (c) Overcurved rings of paper creased along their curved median line. The coloured rulers are 8 cm in length. (d) Jointed arcs of wood giving

rise to human-scale overcurved rings of square cross-section. For these macroscopic systems, gravity starts to affect the shape. The computed or

measured pre-set overcurvatures Op are indicated in the top left corner of each sub-figure.
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paper along its median circle, and adjusted the degree of
overcurvature by tuning the crease angle d and holding it
constant. After observations, the paper ring was cut and the
number of turns in the formed coil was quantified to compute Op.
This overcurvation process corresponds to increasing the local pre-
set curvature while keeping the length constant.

Finally, to give a human-scale example of overcurved structures,
arcs of wood of radius of curvature R¼ 1m were combined with
clamping collars to form closed continuous rings of square cross-
section, with different magnitudes of the pre-set overcurvature.
Representative images are shown in Fig. 2d and in Supplementary
Fig. S4.

The overcurvation scenario is similar for all observed systems:
the conformation starts from a circle at Op¼ 1 and buckles to a
saddle shape with two pairs of upper and lower lobes for larger pre-
set overcurvatures. The opposite lobes of the saddle then overlap
close to Op¼ 2.5, and the ring finally debuckles to form a triple-
coiled loop for Op¼ 3. All conformations have D2d symmetry (for
creased paper, this holds true only for the crease line). Although
some issues are specific to each case, such as the cross-section
rotation angle or the formation of wrinkles and lateral creases, the
general scenario is identical for these systems, which cover almost
five orders of magnitude in spatial scale, and for which the physical
origin of overcurving differs sensibly. In the sequel, we concentrate
on the general conformation of the centre lines of the rings (or of
the crease lines for paper strips), and ignore details such as small
wrinkles and lateral creases.

Overcurved circles. We look for a mathematical description of
the centre lines of rings of overcurvature O, by a family of closed
curves r(s,O) named here overcurved circles. This is done starting
from experimental measurements made on creased paper rings
and closed arcs of the Slinky spring. For overcurved creased paper
rings, we demonstrate in the Supplementary Methods that the
curvature of the crease line is constant all over the ring when the
width of the paper strip is small enough. This is not generally true
for larger strip widths; however, even in this case, the curvature
remains constant if the crease angle is held fixed by rigidifying the
structure, as was checked experimentally for Op¼ 2.07
(Supplementary Methods; Supplementary Figs S5 and S6). Like-
wise, for two overcurved rings made of segments of the Slinky
spring, of pre-set overcurvature Op¼ 1.5 and 2.33, the curvature
of the centre line was constant within experimental precision
(Methods; Supplementary Figs S7 and S8). In addition, over each
lobe of the overcurved rings, the ends of the curvature vector22

k(s)¼ d2r/ds2 were sitting in the same plane within experimental
precision (Supplementary Fig. S9); hence, they belonged to the
intersection of a sphere and a plane. Given these observations, we
define overcurved circles as tridimensional closed curves having a
curvature vector of constant magnitude, with its end lying on the
parallel of a sphere for each of the four lobes.

Curves of constant curvature with their normal vectors
n(s)¼ k� 1k(s) lying on a parallel of a sphere are known as
Salkowski curves, and can be described parametrically28–30. In
order to construct overcurved circles, four pieces of Salkowski
curves are thus connected while respecting the D2d symmetry of
the problem and ensuring the continuity of the torsion t(s). This
can be done by generalizing a procedure recently proposed by
Monterde29 based on previous work by Koch and Engelhardt31.
The procedure involves constructing a closed and continuous
normal indicatrix, or nortrix, which is the locus of the ends of the
normal vectors n(s), leading to the final curve by double
integration with respect to s.

Take a right two-sided antiprism of height h with a lateral
midsphere of unit radius (Fig. 3a). The lateral midsphere of the

antiprism is the sphere having the same barycenter as the
antiprism, and which is tangent to its lateral edges at midlength.
The intersection of the antiprism with its lateral midsphere
defines four circles of angular opening f, where f is bijectively
related to h (Supplementary equations S34 and S35). Two
successive intersection circles are tangent, because the lateral edge
that separates them is a common tangent. In order to build a
nortrix, arcs of these circles are connected by joining either the
circular arcs of central angle o open towards the bases of the
isosceles triangles (yellow curve in Fig. 3a), or the ones of central
angle 2p�o open to the apexes (blue curve). These two possible
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Figure 3 | Overcurved circles are mathematical curves obtained by

double integration of the intersection between a sphere and an antiprism

of variable height h. (a) Intersection between a two-antiprism and its

lateral midsphere of unit radius (drawn for f¼0.872 and h¼ 3.108).

The two possible paths for the nortrix are indicated in yellow and blue.

(b) Conformation of the overcurved circle obtained by double integration of

the yellow nortrix of panel a (O¼ 1.041). (c) Conformation of the

overcurved circle obtained by double integration of the blue nortrix of

panel a (O¼ 1.443), together with a graphical definition of the distance

between the apexes of opposite lobes, D, and the height of the curve,

H. (d) Relationship between the height of the two-antiprism and the

overcurvature of the resulting overcurved circles. The curves in yellow and

blue are related to the two possible paths for the nortrix, displayed with

the same colour code in panel a. (e) Normalized distance between

opposite lobes, pD/L, and height, pH/L, of overcurved circles, versus

their overcurvature O.
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paths are continuous to first order because the arcs are tangent.
Double integration of any of these two nortrices with respect to
arc length generates an overcurved circle containing four lobes;
each lobe is a piece of a Salkowski curve having normal vectors
n(s) making a constant angle f with respect to the normal to the
corresponding side face of the antiprism; the four lobes are
related by the 4 rotoinversion axis of the D2d symmetry group of
two antiprisms. The continuity of the nortrix ensures that the
final curve is continuous to third order and has a continuous
torsion. Hence, the so-defined curves respect all our
requirements; their analytical expression is given in the
Supplementary Methods (Supplementary equations S46–S51).

The overcurvature O of overcurved circles can be expressed as
a function of the height h of the antiprism (Fig. 3d); the complete
range 1rOr3 is covered by the blue and yellow paths of Fig. 3a
when the height h of the antiprism varies from 0 to N.
Conversely, all geometrical parameters (h, f and o) can be
expressed mathematically as functions of O (Supplementary
equations S34, S35 and S53). Hence, this geometrical ansatz leads
to the generation of a complete family of curves parameterized by
O. Figure 3b,c shows the saddle shapes of overcurved circles for
O¼ 1.041 and 1.443, respectively, (h¼ 3.108). Single-coil and
triple-coil flat circles are obtained for O¼ 1 and 3, respectively.
Figure 3e presents the normalized height H/L of overcurved
circles and the normalized distance between the apexes of their
opposite lobes, D/L, versus overcurvature O.

Buckled rings. Quantitative measurements were performed on
rings made of arcs of the commercial Slinky spring, whose con-
formations proved to be highly reproducible and for which the
pre-set overcurvature can be accurately measured. The normal-
ized distance between the apexes of opposite lobes, D/L, averaged
over the two pairs of lobes, is plotted versus Op in Fig. 4e (red
dots). Two plateaus of constant D/L are observed at the beginning
and at the end of the curve, corresponding to flat circular con-
formations. Between these two plateaus, D/L varies almost line-
arly with Op. The transition from a flat circle to a saddle defines
the buckling overcurvature Ob which marks the end of the first
plateau, while the transition from the buckled states to a flat triple
coil corresponds to the debuckling overcurvature Od, which

signals the start of the second plateau. On the plateaus, the rings
remain flat and adopt simple circular shapes with well-defined
amounts of stored elastic energy dictated by the local curvature k.
Because k� 1 and L evolve proportionally, the overcurvature O
remains constant on these plateaus.

Figure 4a,b show the conformations of Slinky spring rings with
pre-set overcurvature Op between 1 and 3. The conformations of
overcurved circles of overcurvature O selected to have the same
values of D/L are reproduced in Fig. 4c,d. All the experimentally
observed conformations can be qualitatively covered by the
geometrical ansatz. The (x,y,z) coordinates of the centre line of
overcurved Slinky rings of pre-set overcurvature Op¼ 1.5 and
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Figure 4 | Overcurved material rings can be quantitatively described by

minimizing their torsion and bending energies. (a,b) Experimental side

and top views of overcurved rings made of closed arcs of a commercial

Slinky spring for pre-set overcurvatures Op ranging from 1 to 3. (c,d)

Corresponding overcurved circles with the overcurvature O selected in

order to reproduce the experimental distance D between the apexes of

opposite lobes. The experimental demonstration of the quantitative

agreement of the model shape is in the Methods. (e) Comparison between

experimental and simulated normalized distances D/L between the lobe

apexes. The circular symbols are the experimental data; the continuous

lines are the simulations. The red curve is for closed arcs of a commercial

Slinky spring of rectangular cross-section; the black curve (shifted vertically

by 0.7) is for closed arcs of a home-made poly(vinyl chloride) spring of

square cross-section; the blue curve (shifted vertically by 1.4) is for closed

arcs of a polyamide spring of circular tubular cross-section. (f) Computed

equilibrium overcurvature Oeq (red curve) and computed equilibrium

torsion reduction coefficient aeq (black curve) of closed arcs of the Slinky

spring of panel e. The open circles are experimental data from panels a

and c. (g) Simulated bidimensional map of the equilibrium overcurvature of
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increasing values of width W versus thickness t, for pre-set overcurvatures

Op. The red lines are the loci of the buckling Ob and debuckling Od
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2.33 were also measured (Methods; Supplementary Fig. S7). An
excellent agreement was found with the coordinates of over-
curved circles of overcurvature O¼ 1.54 and 2.5, respectively,
confirming the quantitative ability of the theoretical model to
represent the tridimensional shape of overcurved rings. A rea-
sonably good agreement was also found for measurements per-
formed on creased paper rings (Supplementary Fig. S6). However,
OaOp; therefore, a relationship between these two parameters
still needs to be derived to quantitatively analyse the shape of
overcurved rings. In addition, the origin for the buckling and
debuckling plateaus has to be explained. This requires taking into
account the variations of the bending and torsional energies of
the ring, depending on its cross-sectional shape and stiffness.

Consider a ring of pre-set curvature kp in the undeformed, flat
state. When a portion of length L4 2pk� 1

p is connected to create
an overcurved ring, internal stresses build up. Therefore, the local
curvature changes to kakp, and the ring buckles out-of-plane to
decrease the bending energy. Simultaneously, a torsional defor-
mation tm(s) appears, where tm(s) is the gradient of rotation of
the cross-section along the centre line32. Given the good
agreement between experimental conformations and the shape
of overcurved circles, we postulate that the final conformation of
the buckled ring can be described by an overcurved circle of
overcurvature O¼ Lk/(2p)aLkp/(2p)¼Op, and that the
mechanical torsion of the ring is proportional to the
mathematical torsion of the centre line: tm(s)¼ at(s) with ar1.
Then, the torsional and bending energies of the ring can be
expressed as mathematical functions of the pre-set overcurvature
Op, actual overcurvature O and torsion relaxation coefficient a, in
addition to geometrical and material parameters (Supplementary
Discussion and Supplementary equations S2, S4 and S5).

Numerical minimization with respect to both O and a of the
total energy of the ring provides the equilibrium overcurvature
Oeq and the equilibrium torsion reduction coefficient aeq,
corresponding to a given pre-set curvature Op. These
equilibrium parameters were computed for the poly(vinyl
chloride) ring made of arcs of the commercial Slinky spring of
rectangular cross-section (geometrical parameters are in the
Supplementary Table S1). The predicted dependence of Oeq on Op

is compared in Fig. 4f to the experimental data (taken from
Fig. 4a,c), showing excellent agreement. From the knowledge of
Oeq, the distance D between the apexes of opposite lobes can be
computed using the relationships for overcurved circles. The
comparison of experimental and predicted D (Fig. 4e, red line)
indicates a perfect quantitative agreement between theory and
experiment. When D tends to zero, there should be a slight
perturbation of the shape due to the excluded volume of the ring.
This perturbation is too small to be noticed for small cross-
sectional dimensions compared with the radius of curvature of
the undeformed ring.

The predicted effect of a relative change of cross-section
dimensions on the equilibrium overcurvature is shown in Fig. 4g,
for the case of a rectangular cross-section of width W and
thickness t. The equilibrium overcurvature Oeq does not depend
strongly on the nature of the material of the ring, because the only
material constant of relevance in the energy minimization is
1/(1þ n), which typically varies from 0.67 to 0.83 for most
materials (n is the Poisson ratio). Three regimes can be observed,
depending on the anisotropy W/t of the cross-section. For
horizontally elongated cross-sections (W/trB1.05), the stable
state is the flat ring (Oeq¼ 1) when the pre-set overcurvature is
below the buckling overcurvature Ob; above the debuckling
overcurvature Od, the stable state is the triple-coil ring (Oeq¼ 3);
in-between these extreme values, the conformation varies
continuously as a function of the pre-set overcurvature,
sampling all possible values between 1 and 3. In contrast, for

vertically elongated cross-sections (W/trB0.78), the stable state
is the flat ring for pre-set overcurvatures o2; for larger pre-set
overcurvatures, the stable state is the triple-coil ring. There is thus
no continuous conformational change allowing us to pass from
one state to the other. Accordingly, when increasing lengths of
arcs of a home-made poly(vinyl chloride) spring havingW/t¼ 0.5
were connected in a ring by counter rotation of the arc, the
system never transited to the triple-coil state. Instead, it remained
in the flat single-coil ring metastable state, then buckled in-plane
(wrinkling) until crazing and failure happened.

For intermediate values of the cross-section anisotropy, the
transition between the two plateaus has a mixed character, and
metastable states exist: the full analysis is provided in the
Supplementary Discussion and Supplementary Figs S10 and S11.
Experiments were performed in this regime on a home-made
poly(vinyl chloride) of square cross-section (Fig. 4e, black) and on
a commercial polyamide spring of circular tubular cross-section
(Fig. 4e, blue). The model again reproduces very well the
lengthening of the pre- and de-buckling plateaus, as well as the
location of the transition and its asymmetry. The small deviations
between model and experiment are due in part to the fact that we
connected arcs of helices (springs), and not true arcs of circles;
therefore, a pre-torsion exists in the flat states that contributes to
a slight decrease of the length of the debuckling plateau.
Furthermore, for the triple-folded side, excluded volume effects
also contribute to disfavour the flat state. Limited plastic
deformation of the arcs after straining also explains the
deviations between experiment and model.

How to fold a ring. Although the previous section concentrated
on systems of constant pre-set curvature kp and increasing length
L, the folding of rings corresponds to increasing the pre-set
curvature while keeping the length of the ring constant. This is
the operation performed when, for example, folding the ‘2-sec-
ond’ tent of Fig. 1a. Because equilibrated ring conformations
correspond to overcurved circles, the folding path of least resis-
tance involves forcing the ring to follow the different conforma-
tions of overcurved circles of increasing O; therefore, the notion
of overcurvature proves useful for the folding of rings as well.

Folding a ring in three loops thus consists of making four lobes
that are folded as shown in Fig. 5a. Folding rings will be easier
when the cross-sectional shape is selected so as to favour the
existence of a continuous set of equilibrated conformations
between the initial ring shape and the triple coil: rings of rec-
tangular cross-section are thus easier to fold when they have a
larger cross-sectional anisotropy W/t (Fig. 4g). Note that the
spontaneous unfolding of a folded ring does not follow the
folding path of least resistance; instead, it follows the path of
steepest energy gradient, that might be quite different and would
be worth exploring further.

An interesting generalization of the theory presented above can
be used to find how to fold a ring into a larger number of
untwisted loops. It involves taking as nortrix the intersection of a
unit midsphere with the side faces of a right m-antiprism, instead
of a two-antiprism (Supplementary Fig. S12). The resulting
overcurved circle has Dmd symmetry and is made of 2m lobes
(arcs of Salkowski curves); it folds into (2m–1) loops. The com-
plete description is in the Supplementary Methods and
Supplementary Table S2. An example of path to follow to fold a
ring into five loops is shown in Fig. 5b (m¼ 3), together with the
experimental example of a ring folded along such a pathway. This
peculiar folding corresponds to reducing the diameter by a factor
of 5, and therefore the total surface of the ring by a factor of 25,
which is a substantial gain in compactness. Whether folding a
ring in an even higher number of loops is possible depends on the
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mechanical characteristics of the ring, the dimensions of its cross-
section and its initial pre-set curvature. The excluded volume is
likely to make folding more difficult for higher values of m.

Discussion
The analysis presented here is not complete and relies on two
assumptions. The first one is the constancy of curvature over the
rings, which we demonstrated for creased paper rings of small
strip width. For the other studied systems, it remains an
hypothesis, which we validated by experimental observations.
Further work should concentrate on delineating its conditions of
validity; it is likely to break down for systems of larger cross-
section. The second assumption is that each lobe of an overcurved
ring is a segment of a Salkowski curve. This hypothesis was also
validated by experimental measurements, and proved to be
mathematically convenient because it allowed us to provide an
analytical approximate solution to a non-trivial buckling
problem. However, its experimentally demonstrated validity still
lacks a compelling reason. Despite these shortcomings, our
solution is already able to represent accurately the general shape
of the rings and to connect together a series of systems, as well as
relating ring buckling and ring folding.

Interestingly, the mathematical curves used to model over-
curved rings form a complete set of curves parameterized by m
and O, which might prove useful for solving other problems of
physics of Dmd symmetry. Furthermore, the geometrical con-
struction used to generate overcurved circles could be generalized
to other more complex systems, including foldable systems
containing hinges allowing the total twist to be non-zero.
Although our approximate solution does not result from solving
instability equations, it provides a simple, quantitatively accurate
and analytical method for choosing a pre-set overcurvature Op

and the cross-sectional dimensions, leading to a desired over-
curved conformation. Therefore, it should find widespread usage
for a series of scientific problems, such as the folding of plasmid
DNA, the self-folding of rings in tridimensional micro-devices or
the compaction of deployable items. In addition, it provides rules
for designers and origamists for reaching novel complex shapes;
finally, and maybe most importantly, it explains to hikers how to
fold some popup tents as fast as they can be deployed.

Methods
Construction of overcurved rings made of arcs of a Slinky spring. Segments of
various length were cut in a commercial ‘rainbow’ Slinky spring of 100mm
diameter, with a cross-section of 5.5mm width and 2mm thickness. After
tangential rotation and alignement, the two ends of the segments were connected
by two small M2 bolts separated by 1 cm along the central line of the segments.
This prevented the two ends from twisting with respect to each other.

Fabrication of overcurved microrings. Bilayered microrings were produced by
microlithography as reported before25, with a top 500-nm thick aluminium layer
resting over a 300-nm thick layer of silicon nitride. The cross-sectional width of
the rings was 5 mm, and their diameter 2R ranged from 10 to 500 mm by 2.5 mm
steps. Rectangular beams of identical width and vertical composition were also
made in order to determine the spontaneous curvature after release.

Fabrication of overcurved paper rings of constant crease angle. In order to fix
the crease angle for paper rings, we progressively impregnated the crease with
cyanoacrylate glue, while moving and pinching the crease with tweezers to keep
the distance between the edges of the crease constant. This was done for the
samples displayed in Fig. 2. Another method is to use small paper standoffs that are
folded and glued in order to fix the distance between the edges of the crease,
as described in the Supplementary Methods and Supplementary Fig. S5.

Construction of macroscopic overcurved rings made of arcs of wood. Wooden
sculptures were made by joining 2n arcs of wood of rectangular cross-section
(width W¼ 24mm, thickness t¼ 12mm), having a radius of curvature R0¼ 1m
and an arc length La¼ 62.8 cm (361 of angular opening). The arcs were stacked in
two layers, with the arcs in the top layer being translated azimuthally by La/2
compared with the underlaying layer, like bricks in a wall. The structure was held
by clamping collars to form closed continuous rings of square cross-section (width
W, thickness 2t). The pre-set overcurvature Op¼ nLa/(2pR0). Supplementary
Fig. S4 is a picture of one of the macroscopic wooden sculptures realized; the arcs
of the sculpture were first assembled while not tightening the clamping collars to
allow for some flexibility. After the ring was assembled, the bolts were tightened,
which resulted in the spontaneous formation of its tridimensional shape.

Mathematical construction of an overcurved circle of overcurvature O. Given a
value of O, the corresponding o and f are computed numerically by the
Supplementary equations S35 and S53, and one lobe of the final curve is generated
using the t-parameterized equations of Salkowski curves (Supplementary equations
S46–S48) by varying t between �o/2 and o/2. The other lobes are obtained by
Supplementary equations S49–S51. Spatial rescaling by multiplication of all coor-
dinates by a factor l can then be applied if needed, with the curvature k and torsion
t(s) of the curve being thereby multiplied by 1/l.

Validation on Slinky springs of the hypotheses used to build the mathematical
model. The shape of the centre line of overcurved rings made of closed segments of
a Slinky spring was determined by measuring with a ruler (precision 0.5mm) the
(x,y,z) coordinates of two rings of 1.5 and 2.33 pre-set overcurvature Op, respec-
tively. This Slinky ring was of 48mm central radius, and had a rectangular cross-
section (2� 5.5mm2) with the longer side aligned along the radius of the ring
(before overcurvation). Supplementary Fig. S7 presents the recorded experimental
values (circles), together with the theoretical prediction for overcurved circles of
1.54 and 2.5 overcurvature O, respectively. The agreement is extremely good,
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Figure 5 | How to fold a ring in an odd number of loops. (a) Successive

conformations of the ring for three final loops, corresponding to the path

of least resistance. The numbers are the overcurvatures. The bottom

picture is an experimental realization, where the starting ring was made by

bending a steel wire of circular cross-section (1mm diameter) in a hoop of

1m diameter. (b) Successive conformations of the ring for five final loops.
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testifying for the capability of the model to represent quantitatively the centre line
of overcurved rings and therefore their general conformation. The difference
between the pre-set overcurvature Op and the real overcurvature O is due to the
deformation of the ring resulting from its closure.

The curvature vector of the experimental centre line was computed by double
differentiation with respect to arc length, after a slight spline smoothing was
applied. Supplementary Fig. S8 shows the computed components of the curvature
vector as well as its magnitude k. When Op¼ 1.5, k¼ 0.0208mm with a s.d. of
0.002mm (measured for 55 equidistant points along the arc); when Op¼ 2.33,
k¼ 0.0218mm with a s.d. of 0.001mm (measured for 57 equidistant points along
the arc).

The experimental error bar on the curvature was also estimated by considering
that the distances were measured with an optimistic precision of 0.25mm, and that
errors during differentiation add up in a root-mean-square fashion as is the case for
gaussian probability distributions; this provides estimated errors on the curvature
of ±0.0036mm� 1 and ±0.0016mm� 1 for Op¼ 1.5 and 2.33, respectively. In
both cases, because the estimated error is larger than the s.d. of the measurements,
the curvature can be considered to be constant within experimental precision,
indicating that the extremities of the curvature vectors of an overcurved ring can be
taken to lie over a sphere. Although the limited precision of the doubly differ-
entiated experimental data prohibits to exclude the possible existence of small
oscillations of the curvature about its average value16, these oscillations—if
any—have no perceptible practical consequence for the general conformation of
the centre line of the rings as shown in the Supplementary Fig. S7, where the
simulation is obtained assuming the curvature to be constant.

Finally, the trajectory of the extremity of the curvature vector, projected over the
vertical bisecting plane of a lobe, was computed (Supplementary Fig. S9). The data
from four lobes were superimposed for each graph, in order to increase the
information content. For the two rings tested, all points aligned within
experimental precision, demonstrating that the curvature vector associated to each
lobe maybe considered as belonging to a plane. Because the end of the curvature
vector also belongs to a sphere, it follows—within experimental precision—that the
end of the curvature vector of one lobe describes an arc of a circle and belongs to
the intersection of a sphere with a plane. Therefore, the curvature vector also makes
a constant angle with respect to the line passing by the centre of the circle and
perpendicular to the plane to which the end of the curvature vector belongs. This
demonstrates experimentally the validity of the hypotheses used to construct the
nortrix of overcurved rings, whose construction is fully described in the
Supplementary Methods.
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