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Recognition of vitamin B metabolites
by mucosal-associated invariant T cells
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The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1

presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in

complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an

agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT

TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recog-

nition receptor. The invariant MAIT TCR a-chain usage is attributable to MR1-mediated

interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite.

Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory

antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in

comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for

MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize

microbial metabolic signatures.
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T
he ab T-cell receptor (TCR) binds peptide and lipid-based
antigens presented by the major histocompatibility com-
plex (MHC) and CD1 families, respectively. In addition,

some TCRs can recognize small organic compounds presented by
MHC-like molecules, although the basis of this interaction is
unknown. Mucosal-associated invariant T (MAIT) cells are an
abundant population of innate-like T cells in humans that reside
in the peripheral blood, but are predominantly found in the
gastrointestinal mucosa and liver1,2. Although the physiological
role of MAIT cells is emerging, it is established that numerous
bacteria and yeast activate MAIT cells3–6. MAIT cells also require
the gut microbiota for their development, and are implicated in
protective immunity and several disorders caused by aberrant
immunity3,4,7–12. MAIT cells, like type I natural killer T-cells
(NKT cells), rapidly secrete a range of cytokines upon activation
through a receptor selected from the adaptive ab TCR repertoire
that is expressed on their cell surface5. The NKT TCR specifically
recognizes a variety of synthetic, self and foreign lipid-based
ligands bound to CD1d13,14, whereas the MAIT TCR is restricted
to the ubiquitously expressed MHC-I-related molecule15, MR1,
which presents vitamin B-based metabolites to MAIT cells16.
Consistent with their innate-like phenotype, MAIT and NKT cells
express a very restricted T-cell repertoire, in contrast to the
enormously diverse T-cell repertoire often observed in MHC-
restricted immunity17–19. Human MAIT cells are characterized
by an invariant TCR a-chain (TRAV1–2–TRAJ33) paired with a
limited array of TCR b-chains (TRBV6 or TRBV20)17, whereas
human type I NKT cells express an invariant a-chain (TRAV10–
TRAJ18) coupled to a TRBV25-1-encoded TCR b-chain20. A high
level of conservation of MR1 in mammals, and the restricted
MAIT TCR usage, strongly indicates an important and
evolutionarily conserved function for the MAIT TCR–MR1 axis
in immunity21. We recently described a family of vitamin
B-related ligands presented by MR1 that exhibit variable potency
for MAIT cells16. Central to understanding the MAIT cell
function is the basis for the highly restricted MAIT TCR
a-chain selection, the nature of the MAIT TCR–MR1–Ag
interaction, the mechanisms by which the MAIT TCR
discriminates between MR1-bound vitamin B metabolites, and
the basis of MAIT cell agonism.

Here we present the crystal structures of the MAIT TCR bound
to MR1 presenting a non-agonist and an agonist antigen. We
provide insight into the invariant MAIT TCR a-chain usage, MR1
restriction and, importantly, provide definitive insight into TCR
recognition of vitamin B metabolites, thereby providing the
molecular basis for MAIT cell agonism.

Results
Overview of the MAIT TCR–MR1–Ag complex. Although a
folic acid metabolite (6-formyl pterin, 6-FP) did not activate
MAIT cells, riboflavin derivatives, including 7-hydroxy-6-methyl-
8-D-ribityllumazine (RL-6-Me-7-OH), specifically stimulated
MAIT cells in an MR1-restricted manner16. Although the MR1-
restricted ligands, including 6,7-dimethyl-8-D-ribityllumazine
and reduced 6-hydroxymethyl-8-D-ribityllumazine, refolded
very inefficiently with MR1 (thereby hampering structural
studies), 6-FP and RL-6-Me-7-OH refolded sufficiently well
with MR1 to enable structural studies to readily proceed.
Accordingly, to definitively establish how a MAIT TCR binds
stimulatory and non-stimulatory MR1–antigen complexes, we
expressed and refolded a MAIT TCR (TRAV1–2–TRAJ33–
TRBV6-1) (not shown) and crystallized it in complex with
MR1-6-FP and MR1–RL-6-Me-7-OH. Both MAIT TCR–MR1–
Ag ternary complexes were solved to a very high resolution
(Table 1), and the electron density for the vitamin B metabolites

within the MR1 clefts and that at the MAIT TCR–MR1–Ag
interfaces were unambiguous (Supplementary Fig. S1). Apart
from ligand-specific interactions (discussed below), the two
MAIT TCR–MR1–Ag complexes are virtually identical. To
provide a context for how TCRs can recognize vitamin B
metabolites, peptides and lipids, we compared the MAIT TCR–
MR1–RL-6-Me-7-OH complex with a representative TCR–
MHC-I-peptide and a type I NKT TCR-CD1d-a-galactosylceramide
(a-GalCer) complex (Fig. 1a)22,23.

The MAIT TCR docked approximately centrally and ortho-
gonally to the main axis of the MR1–Ag-binding cleft, interacting
with residues spanning 61–72 and 148–164 of the a1 and a2
helices of MR1, respectively (Fig. 1a,b). The MAIT TCR–MR1–
Ag docking topology starkly contrasted with the consensus type I
NKT TCR–CD1d–lipid interaction, whereupon the NKT TCR
docked parallel to and above the F0-pocket of the CD1d–antigen
complex (Fig. 1a–c)13. Although TCRs can engage the MHC
peptide in a range of docking modes24, the MAIT TCR–MR1–Ag
complex was analogous to typical TCR–MHC-I–peptide docking,
in which the a and b chains of the MAIT TCR were positioned
over the a2 and a1 helices of MR1, respectively (Fig. 1a,b).
Indeed, there was similarity in the overall docking mode between
a TRAV1–2 TCR–HLA-B*35:01–peptide complex22 and the
MAIT TCR–MR1–RL-6-Me-7-OH complex. This similarity was
surprising, given that the Vb8.2þ TCRs adopt markedly different
footprints on MHC and CD1d25. Further, the respective
interatomic contacts differed markedly, which is partly due to a

Table 1 | Data collection and refinement statistics.

MAIT TCR–
MR1–6-FP

MAIT TCR–MR1–
RL-6-Me-7-OH

Data collection
Temperature 100K 100K
Space group C2 C2
Cell dimensions

a, b, c (Å) 217.23, 69.56, 142.89 218.37, 71.20,
144.64

a, b, g (�) 90, 104.42, 90 90, 104.86, 90
Resolution (Å) 50.00-2.00

(2.11–2.00)
75.44-1.90
(2.00–1.90)

Rp.i.m.* 5.9 (36.6) 7.5 (49.8)
I/s1 10.5 (2.1) 9.8 (2.2)
Completeness (%) 99.9 (99.9) 99.8 (100.0)
Total no. of. observations 709,849 1,198,766
No. of. unique observations 139,624 1,68,903
Multiplicity 5.1 (5.1) 7.1 (7.1)

Refinement statistics
Rfactor

w (%) 18.4 17.9
Rfree

z (%) 22.4 20.9
No. of atoms

Protein 12,719 12,572
Ligand 26 46
Water 1,449 1,103

Ramachandran plot (%)
Most favoured 91.5 91.8
Allowed region 8.5 8.2

B-factors (Åw)
Protein 30.0 29.5
Ligand 22.2 21.6

r.m.s.d. bonds (Å) 0.010 0.010
r.m.s.d. angles (�) 1.05 1.03

Values in parentheses refer to the highest-resolution bin.
*Rp.i.m.¼Shkl[1/(N� 1)]1/2Si|Ihkl, i�oIhkl4|/Shklo Ihkl4.
wRfactor¼ (S| |Fo|� |Fc| |)/(S|Fo|)—for all data except as indicated in the next footnote.
z5% of data were used for the Rfree calculation.
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lack of sequence identity between MR1 and MHC-I at the site of
the MAIT TCR footprint (Fig. 1c, Supplementary Fig. S2).
Moreover, there was little sequence identity between MR1 and the
CD1 family at this interaction site, suggesting that there will be
little in common between how TCRs can engage CD1 and MR1
(Supplementary Fig. S2). The buried surface area (BSA) at the
MAIT TCR–MR1–Ag interface was approximately 1,200Å2,
which falls within the upper end of the range of BSA values for
TCR–MHC-I–peptide interactions (600–1,200Å2) and outside

the range of NKT TCR–CD1d–lipid interactions (760–
910Å2)13,24,26. However, RL-6-Me-7-OH contributed merely
0.6% of the BSA at the MAIT TCR–MR1–RL-6-Me-7-OH
interface, whereas the 6-FP ligand did not contribute at all.
This low % BSA contribution from the MAIT agonist ligand
contrasts with the range that peptides contribute to the TCR–
MHC-I–peptide interface (10–25% BSA), and is more analogous
to how only a small component of lipid Ags are directly available
for NKT TCR contact13,24. Thus, MR1 dominates the interactions

Type I NKT TCR–CD1d–lipid TCR–MHC–peptideMAIT TCR–MR1–RL-6-Me-7-OH
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Figure 1 | Docking mode of the MAIT TCR in comparison with an NKT TCR that binds CD1d–lipid and a conventional TCR that binds MHC-I–peptide.

(a) Left, MAIT TCR in complex with MR1–RL-6-Me-7-OH. MAIT TCR a-chain, cyan; MAIT TCR b-chain, salmon; CDR1a, purple; CDR2a, pink, CDR3a,
yellow; CDR1b, teal; CDR2b, red; CDR3b, orange; RL-6-Me-7-OH, magenta; and MR1, grey. Middle, type I NKT TCR in complex with CD1d-lipid. NKT TCR

a-chain, yellow; NKT TCR b-chain, green; lipid, magenta; CD1d, pale cyan; CDR loops colour coding as in a. Right, conventional TRAV1–2 TCR in complex

with an MHC-peptide TCR a-chain, blue; TCR b-chain, brown; MHC, pale green; peptide, magenta; CDR loops colour coding as in a. (b) Left, MAIT TCR–

MR1–RL-6-Me-7-OH complex; middle, NKT TCR–CD1d–lipid complex; and right, conventional TRAV1–2 TCR–MHC–peptide complex viewed down into the

antigen-binding cleft. Black-filled circles indicate the centre of mass for the Va and Vb domains; CDR loops colour coding as in a. (c) Left, footprint of the

MAIT TCR on the surface of MR1–RL-6-Me-7-OH; middle, footprint of the NKT TCR on the surface of CD1d–lipid; and right, footprint of the TRAV1–2 TCR

on the surface of MHC–peptide. CDR loops colour coding as in a.
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with the MAIT TCR (Supplementary Tables S1 and S2), which
was characterized mostly by hydrophobic contacts.

Basis of MAIT TCR b-gene usage. The a- and b-chain of the
MAIT TCR contributed almost equally to the BSA at the MAIT
TCR–MR1–Ag interface. The MAIT TCR b-chain is biased
towards TRBV6-1, TRBV6-4 and TRBV20 usage17. Although the
CDR1b loop did not contact MR1–Ag, the CDR2b loop abuts the
a1 helix, and makes 13% BSA upon complexation (Fig. 1c). There
are a large number of polar residues at the CDR2b–MR1 contact

zone, but only one CDR2b residue (Thr54b) H-bonds to MR1,
and thus van der Waals contacts underpin the CDR2b–MR1
interaction (Fig. 2a). Nevertheless, three neighbouring framework
residues (Tyr48b, Thr55b and Asp56b) that flank the CDR2b
loop also add to the TCR b-chain–MR1 interface (8.4% BSA)
(Fig. 1c), which includes a H-bond between Tyr48bOH and Arg61
from MR1 (Fig. 2a). Mostly, the Vb-mediated interactions seem
non-ideally disposed to interact with MR1, consistent with
previous mutagenesis studies on the TRBV20–MAIT TCR, which
suggested that no individual Vb residue is essential for MAIT cell
activation27. Further, there is no sequence identity in the
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Figure 2 | Contacts between MAIT TCR and MR1–RL-6-Me-7-OH. (a) Contacts between CDR2b and CDR2b framework residues and MR1. (b) Contacts

between CDR3b and MR1. (c) Contacts between CDR1a and MR1. (d) Contacts between CDR2a and TCRa chain framework residues and MR1.

(e) Contacts between CDR3a and MR1. MR1, grey; CDR2b, red; CDR2b framework, salmon; CDR3b, orange; CDR1a, purple; CDR2a, pink; TCRa chain

framework, cyan; and CDR3a, yellow. H-bond and van der Waals interactions are shown in black- and red-dashed lines, respectively.
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corresponding CDR1b and 2b loops between the TRBV6-1/6-4
and TRBV20 genes27. This suggests that the Vb bias in the MAIT
TCR usage may be attributable to preferential pairing with the
MAIT TCR a-chain to generate MR1-restricted TCRs.

Surprisingly, the majority of the TCR b-chain interactions
(24.6% BSA) arose from the non-germline-encoded CDR3b loop,
which, although proximal to the bound Ag, exclusively contacted
MR1 directly (Fig. 1c). The CDR3b–MR1 interactions were
chiefly hydrophobic in nature (Supplementary Tables S1 and S2).
Although interactions via Gly100b and Ser101b contributed to
the CDR3b–MR1 interface, a ‘96Trp–Thr–Gly98’ sequence had a
dominant role in the CDR3b-mediated contacts. Trp96b lies flat
against the a1 helix of MR1, packing against Gly68 and Met72,
whereas Thr97b and Gly98b form hydrophobic interactions with
Arg61, Leu65 and Trp69, with Leu65 having been previously
implicated as an important contact residue (Fig. 2b)27. The
diverse nature of the CDR3b loop in the MAIT TCR repertoire17,
and its location within the MAIT TCR–MR1–Ag complex,
indicates that CDR3b variability may have a direct impact on the
extent of self-reactivity with MR1–antigen.

Basis of MAIT TCR invariant gene usage. MAIT cells are
characterized by germline-encoded invariant TCR a-chain usage
(TRAV1–2–TRAJ33), with a variable residue encoded at the V–J
junction, which does not contact MR1–Ag (not shown). The
CDR1a, CDR2a, Va framework region and the CDR3a loops
contributed 6.8, 11.0, 12.0 and 22% to the BSA of the MAIT
TCR–MR1–Ag interface, respectively (Fig. 1c). Accordingly, the
CDR3a loop of the MAIT TCR a-chain made the greatest con-
tribution to the interface, consistent with the selection of the
invariant TRAJ33 gene segment in MAIT cells (Fig. 1c). The
Gly28a–Phe29a–Asn30a cluster of residues (Fig. 2c), which help
fix the CDR1a loop to MR1, are encoded exclusively by the

TRAV1 gene family. Moreover, Phe29a is totally conserved across
all mammalian TRAV1–2 orthologues (Supplementary Fig. S3),
highlighting the functional role of this residue in MAIT–MR1 co-
evolution. The CDR2a loop resides at the periphery of the
interface (Fig. 1b), with two ‘hydrophobic pegs’ (Val50a and
Leu51a) sitting in an MR1 ‘notch’ that is lined by Leu151 and
Tyr152, and the aliphatic moieties of Lys154 and Asn155
(Fig. 2d). Interestingly, the Leu151Ala mutant can moderately
increase MAIT TCR autoreactivity21,27, thereby further
highlighting the role of this MR1 residue in MAIT TCR
recognition. Flanking the ‘hydrophobic peg’ are two Va-encoded
framework residues, Tyr48a and Arg66a, which collectively form
a series of interactions with MR1 (Fig. 2d). Tyr48a packs against
His148 and points towards Tyr152, whereas Arg66a salt bridges to
Glu159 and H-bonds with Asn155 (Fig. 2d). Evolutionarily, these
CDR2a-framework positions are either totally conserved across
mammalian TRAV1–2 orthologues or exhibit synonymous
substitutions (Supplementary Fig. S3).

The TRAJ33-encoded CDR3a loop sits between the helical jaws
of the MR1 cleft, having a principal role in contacting both the a1
and a2 helices of MR1 and the antigen itself (discussed below)
(Supplementary Tables S1 and S2). Three residues at the tip of the
CDR3a loop (Ser93a, Asn94a, Tyr95a) engage MR1 and this
particular germline configuration is not present in any of the
other 60 TRAJ genes (Fig. 2e). Three TRAJ33-encoded residues
have a prominent role in the interaction: Ser93a H-bonds to
Glu160, and its backbone H-bonds to Tyr62OH; Asn94a back-
bone packs against and H-bonds to Arg61. Tyr95a acts as a
lynch-pin, in that it protrudes deep into the MR1–Ag-binding
cleft, with its hydroxyl group H-bonding to Tyr152OH, while its
aromatic ring is surrounded by a nest of aromatic residues that
includes Tyr62, Trp69, Tyr152 and Trp156 (Fig. 2e). Accordingly,
Tyr95a represents a principal player in the invariant TRAJ33 use
of the MAIT TCR. Of note, Tyr95a is totally conserved across all

α1α1
Y62 W69

L65

α2α2
Y152

MR1–6-FP 153 144

L65 L65

α1 α1Y62 W69
Y62

W69

Y95α Y95αα2 α2
Y152

Y152

MAIT TCR–MR1–6-FP MAIT TCR–MR1–RL-6-Me-7-OH

Figure 3 | Conformational flexibility of the MR1–antigen-binding cleft. (a) Antigen-binding cleft of MR1 with 6-FP bound. The surface is transparent to

show 6-FP. (b) Cartoon overlay of the antigen-binding clefts of MR1–6-FP and MAIT TCR–MR1–6-FP. Movement of the MR1 a2 helix region 144–153

upon MAIT TCR binding is shown in red. (c) Left, antigen-binding cleft of MR1 within the MAIT TCR–MR1–6-FP complex. Right, antigen-binding cleft

of MR1 within the MAIT TCR–MR1–RL-6-Me-7-OH complex. The surface is transparent. MR1, grey; 6-FP in MR1–6-FP, dark green; 6-FP in MAIT

TCR–MR1–6-FP complex, green; RL-6-Me-7-OH, magenta; CDR3a, yellow.
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known mammalian TRAJ33 orthologues. Collectively, only
TRAV1–2–TRAJ33 and none of the other 102 variable or joining
genes in the human TCR a-locus encode the correct architecture
required to maintain archetypal docking to MR1. In addition, key
anchor sites within these receptor genes (Asn30a, Tyr48a,
Val50a, Leu51a and Arg66a, Ser93a, Asn94a, Tyr95a and
Gln96a) are highly conserved across eutherian and marsupial
mammal orthologues, which suggest that the mode of MAIT
TCR–MR1 recognition has remained relatively unchanged for
150–180 million years28.

MR1 plasticity upon MAIT TCR binding. In addition to
determining the nature of the TCR contacts with the vitamin B
metabolites, a comparison of the non-liganded TRAV1–2–
TRAJ33–TRBV20 MAIT TCR structure and the binary MR1-
6-FP complex16,27 allowed us to simultaneously address the extent
of conformational change within the MAIT TCR a-chain and
MR1–6-FP upon ligation. Within the binary MR1–6-FP complex,
the 6-FP moiety was sequestered closely within the MR1 cleft,
such that 6-FP was virtually inaccessible for direct MAIT TCR
contact (Fig. 3a)16. Interestingly, while the MAIT TCR a-chain
and the 6-FP ligand itself did not move upon MAIT TCR–MR1–
6-FP ligation, the MR1–Ag-binding cleft was more malleable
(Fig. 3b). To accommodate the incoming Tyr95a residue from the
CDR3a loop and the neighbouring CDR3b loop, a region of the
a2-helix (144–153) of MR1 was ‘prised open’ upon MAIT TCR
engagement (Fig. 3b). This prising apart of the MR1 cleft, and the
displacement of Tyr152, resulted in greater solvent exposure of 6-
FP (Fig. 3c). Nevertheless, there was no direct contact between the
MAIT TCR and 6-FP in the ternary complex, although Tyr95aOH

formed a water-mediated H-bond with the N1 atom of 6-FP
(Fig. 4a). Notably, the lack of direct MAIT TCR–6-FP contacts
was consistent with 6-FP being a non-stimulatory antigen and the
very low affinity of this interaction (KD(eq)4300mM). Of note,
6-FP is a competitive inhibitor of MAIT activation as it reduces
RL-6-Me-7-OH and rRL-6-CH2OH-induced activation of Jurkat
cells transduced with three distinct MAIT TCRs in a dose-
dependent manner (Fig. 5).

Interaction with vitamin B metabolites. The overall features of
the MAIT TCR–MR1–6FP and MAIT TCR–MR1–RL-6-Me-7-
OH complexes were very similar to each other, including the
more open MR1–Ag-binding cleft that increased the solvent
accessibility of RL-6-Me-7-OH (Fig. 3c, right panel). However,
key differences between the complexes included the MR1–6-FP
contacts differing from those of MR1–RL-6-Me-7-OH, and RL-6-
Me-7-OH directly contacting the MAIT TCR. First, while 6-FP
formed a Schiff base with Lys43 (Fig. 4a), RL-6-Me-7-OH was
non-covalently bound within MR1, which resulted in Lys43
drifting away from the ligand (Fig. 4b). Second, and surprisingly,
the orientation of RL-6-Me-7-OH within the aromatic cradle of
MR1 differed dramatically from that of 6-FP. Namely, RL-6-Me-
7-OH is rotated B75� with respect to 6-FP, such that the MR1-
mediated contacts between the respective ring systems differ
between 6-FP and RL-6-Me-7-OH (Fig. 4b). The tilted con-
formation causes the ribityl moiety of RL-6-Me-7-OH to lean
towards, and form a series of H-bonds with, Arg9 and Arg94, two
evolutionarily conserved residues found within MR1 (ref. 16).
These two Arg residues act as a platform to present the ribityl
moiety in a fixed conformation to enable a direct H-bond with
Tyr95aOH from the CDR3a loop of the MAIT TCR (Fig. 4c).
Although the Tyr95aOH-mediated interaction represented the
sole direct contact between the MAIT TCR and the stimulatory
ligand, it nevertheless was associated with an increased affinity
of interaction (KD(eq)¼ 1.65±0.16 mM Fig. 6a). The importance

of this Ag-centric interaction was evident from the impact of
the Tyr95aPhe mutation, which markedly reduced the
affinity (KD(eq)¼ 33.89±2.22 mM) towards the potent ligand
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Figure 4 | Differences between MAIT TCR–MR1–6-FP and MAIT TCR–

MR1–RL-6-Me-7-OH complexes. (a) Water-mediated interaction between

CDR3a of MAIT TCR and 6-FP. (b) Overlay of MAIT TCR–MR1–6-FP and

MAIT TCR–MR1–RL-6-Me-7-OH complexes. Arrow indicates 75� rotation
of RL-6-Me-7-OH compared with 6-FP. (c) H-bond interaction between

CDR3a of MAIT TCR and RL-6-Me-7-OH. MR1, grey; CDR3a, yellow; 6-FP,
green; RL-6-Me-7-OH, magenta; blue circle, water molecule; H-bond

interactions are shown in black dashed lines.
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rRL-6-CH2OH, as judged by SPR and cell-based activation
assays (Fig. 6b,c). Thus, the principles differentiating
non-stimulatory antagonist ligands and stimulatory MAIT
cell antigens can be attributed to a single H-bond to the
ligand itself.

Discussion
Understanding how the immune system of the human mucosa
interacts with the microbial products of the commensal

microbiota and invading pathogens represents a key emerging
area. We describe the molecular basis of how the immune
system recognizes microbial metabolic products. Although the
basis for interactions between TCRs and MHC–peptide or CD1–
lipid complexes is established25, molecular insights into the
newly discovered capacity of TCRs to interact with small organic
molecules presented by MHC-like molecules is lacking. Our
findings formally detail how a TCR recognizes vitamin B
metabolites and, more broadly, TCR ligation to small organic
metabolites bound by an Ag-presenting molecule.
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MAIT TCR–MR1–antigen recognition shares a mixture of key
features associated with innate-like and adaptive TCR recogni-
tion13,24. Namely, the overall MAIT TCR–MR1–Ag docking
topology was more similar to that of typical TCR–peptide–MHC
complexes and a Type II NKT TCR–CD1d–sulfatide
complex29,30. Nevertheless, the germline-encoded region of the
rigid MAIT TCR contacted the minimally exposed vitamin B
antigen and remoulded the MR1–Ag-binding cleft upon ligation;
these features are more typical of the innate-style interactions and
indicate that the MAIT TCR is an innate-like pattern recognition
receptor targeted towards vitamin B metabolites. For example, the
invariant NKT TCR was shown to mould the CD1d–antigen-
binding cleft and deform b-linked ligands upon
complexation31,32. A molecular basis for the invariant a-chain
usage of the MAIT TCR is presented, showing that only a single
residue within the TRAJ33 region contacts the vitamin-B-derived
antigen. Thus, the principles differentiating non-stimulatory
ligands and stimulatory MAIT cell antigens were attributable to
a single H-bond to the ligand itself. Accordingly, understanding
the molecular basis of human MAIT TCR–MR1–antigen
recognition and the general principles underscoring MAIT cell
agonism provides key insight into how an evolutionarily
conserved and abundant innate-like T-cell population can sense
microbe-derived vitamin B metabolites.

Methods
MR1 and TCR preparation. Genes encoding soluble human MR1, b2m, TRAV1–
2–TRAJ33 and TRBV6-1 were expressed for 4 h in BL21 Escherichia coli after
induction with 1mM isopropyl b-D-1-thiogalactopyranoside. E. coli were pelleted
and resuspended in a buffer containing 50mM Tris, 25% (w/v) sucrose, 1mM
EDTA and 10mM DTT pH 8.0. Inclusion-body protein was then extracted by lysis
of bacteria in a buffer containing 50mM Tris pH 8.0, 1% (w/v) Triton X-100,
1% (w/v) sodium deoxycholate, 100mM NaCl, 10mM DTT, 5mM MgCl2 and
1mg DNaseI per litre of starting culture; the subsequent steps involved homo-
genization with a polytron homogenizer, centrifugation and washing inclusion-
body protein sequentially, with (1) a buffer containing 50mM Tris pH 8.0, 0.5%
Triton X-100, 100mM NaCl, 1mM EDTA and 1mM DTT, and (2) a buffer
containing 50mM Tris pH 8.0, 1mM EDTA and 1mM DTT. Inclusion-body
protein was then resuspended in a buffer containing 20mM Tris pH 8.0, 8M
urea, 0.5mM EDTA and 1mM DTT, and after centrifugation the supernatant
containing solubilized, denatured inclusion-body protein was collected and
stored at � 80 �C.

Refolding of MR1 and MAIT TCR. The method for refolding and purifying the
MR1-b2m–ligand complex is based on a similar methodology to that used for the
classical MHC heavy-chain-b2m–peptide complex described in Kjer-Nielsen
et al.16 and Garboczi et al.33 The refolded MR1-b2m–ligand complex was
then purified by sequential DEAE (GE Healthcare) anion exchange, S75 16/60
(GE Healthcare) gel filtration and MonoQ (GE Healthcare) anion exchange
chromatography. The TRAV1–2–TRAJ33–TRBV6-1 MAIT TCR was expressed,
refolded and purified essentially as previously described27. Both the MR1-b2m–
ligand and MAIT TCR were concentrated to 6mgml� 1 and mixed in a ratio of 1:1
prior to crystallization.

Structure determination. Crystals of MAIT TCR–MR1-6-FP and MAIT TCR–
MR1–RL-6-Me-7-OH complexes diffracted to 2Å or better and belong to the space
group C2, with two molecules within the asymmetric unit. The data were processed
using Mosflm version 7.0.5 (ref. 34) and scaled using SCALA from the CCP4
Suite35. The data for MAIT TCR–MR1–6-FP were solved by the molecular
replacement method using PHASER in CCP4, with MR1 (PDB code 4GUP)
without the ligand and ELS4 TCR (PDB code 2NX5) without the loop region as a
search model. The data for MAIT TCR–MR1–RL-6-Me-7-OH complex were
solved using MAIT TCR–MR1–6-FP, without the ligand as a model. To prevent
model bias, the Rfree set of the MAIT TCR–MR1–6-FP data was used in the
experimental intensities scaling using SCALA as well as the implementation of the
simulated annealing protocol in Phenix36. RL-6-Me-7-OH was modelled using the
Dundee PRODRG2 server37. Both structures were refined using BUSTER 2.10 (ref.
38). Model building was carried out using COOT. The quality of the structure was
validated at the Research Collaboratory for Structural Bioinformatics Protein Data
Bank Data Validation and Deposition Services. All molecular graphics
representations were created using PyMOL39. Surface area calculations were
carried out using Areaimol within the CCP4 suite35. See Table 1 for data collection
and refinement statistics.

Surface plasmon resonance. All surface plasmon resonance (SPR) experiments
were conducted at 25 �C on a BIAcore 3000 instrument using HBS buffer (10mM
HEPES-HCl (pH 7.4), 150mM NaCl). The biotinylated-MR1–Ag complexes were
immobilized to an SA-Chip (GE) with a surface density of approximately 2,000 RU.
Various concentrations of 6-1 MAIT TCR or MAIT TCR Y95F TCR (1.17–
300 mM) were injected over the captured-MR1–Ag at 10 ml min� 1. The final
response was calculated by subtracting the response of the blank flow cell alone
from the MAIT TCR–MR1–Ag complex. The equilibrium data were analysed using
GraphPad Prism.

Assays of Jurkat cells transduced with MAIT TCR. Jurkat cells transduced with
a MAIT TCR comprising the TRAV1–2–TRAJ33 invariant a-chain and the
TRBV6-1, TRBV6-4 or TRBV20 b-chains were tested for activation by co-
incubation with ribityl lumazine compounds and C1R antigen-presenting cells
expressing MR1. For inhibition experiments, 6-FP or a control pterin 6,7-dime-
thylpterin was added to C1R.MR1 cells (105) 30min before the addition of
activating ribityl lumazine compounds RL-6-Me-7-OH and rRL-6-CH2OH, after
which Jurkat.MAIT cells (105) were added for 16 h. Cells were subsequently stained
with PE-conjugated anti-CD3 and APC-conjugated anti-CD69 antibodies before
analysis by flow cytometry. Activation of Jurkat.MAIT cells was measured by
an increase in surface CD69 expression.
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