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Dynamic optimization identifies optimal
programmes for pathway regulation
in prokaryotes
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To survive in fluctuating environmental conditions, microorganisms must be able to quickly

react to environmental challenges by upregulating the expression of genes encoding meta-

bolic pathways. Here we show that protein abundance and protein synthesis capacity are key

factors that determine the optimal strategy for the activation of a metabolic pathway. If

protein abundance relative to protein synthesis capacity increases, the strategies shift from

the simultaneous activation of all enzymes to the sequential activation of groups of enzymes

and finally to a sequential activation of individual enzymes along the pathway. In the case

of pathways with large differences in protein abundance, even more complex pathway acti-

vation strategies with a delayed activation of low abundance enzymes and an accelerated

activation of high abundance enzymes are optimal. We confirm the existence of these

pathway activation strategies as well as their dependence on our proposed constraints for a

large number of metabolic pathways in several hundred prokaryotes.

DOI: 10.1038/ncomms3243

1 Department of Simulation and Optimal Processes, Institute for Automation and Systems Engineering, Ilmenau University of Technology, Helmholtzplatz 5,
98693 Ilmenau, Germany. 2 Research Group Theoretical Systems Biology, Friedrich Schiller University, Leutragraben 1, 07743 Jena, Germany. 3 Department of
Bioinformatics, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743 Jena, Germany. Correspondence and requests for materials should be addressed
to C.K. (email: christoph.kaleta@uni-jena.de).

NATURE COMMUNICATIONS | 4:2243 | DOI: 10.1038/ncomms3243 | www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

mailto:christoph.kaleta@uni-jena.de
http://www.nature.com/naturecommunications


T
he consideration of organisms based on optimality
principles has provided explanations for a large number
of important biological phenomena1–6. An important

component of the adaptation of organisms is the ability to
quickly adapt to changes in their natural environment to survive
and prevail against competitors6–10. With only a limited amount
of resources available, the ability of a quick adaptation can
provide an important evolutionary advantage.

In this work, we study optimal programmes for the activation
of metabolic pathways under the constraint of a limited cellular
protein synthesis capacity. Being able to quickly adjust fluxes
through metabolic pathways is of critical importance to reduce
lag times upon depletion of essential biomass components and
during major growth transitions6,7,11,12. Previous work has
established that, assuming a limited total abundance of proteins
as well as the minimization of the invested protein, a sequential
induction of enzymes along a pathway is optimal for a rapid
activation13–19. That metabolic pathways show a pattern of
sequential activation, also known as just-in-time-activation19, has
been demonstrated experimentally in Escherichia coli for a
selected number of amino-acid biosynthetic pathways18 and on
a global scale in Saccharomyces cerevisiae20.

However, previous works trying to explain these patterns face
several problems. First, they predict that a sequential activation of
enzymes within a linear metabolic pathway is always preferential
to other types of activation strategies. This result is problematic in
that the partial operonic organization of many metabolic
pathways in prokaryotes prohibits a detailed sequential activation
of proteins within a pathway, as proteins on a monocistronic
transcript are produced with only a small delay21,22. To some
extent, these observations can be explained by a balance between
the fitness advantage obtained through a sequential activation of
enzymes within a pathway and the fitness advantage of an
operonic organization that minimizes biochemical noise23,24 and
reduces the length of promoter sequences18. Second, although the
production of proteins represents a burden for the cell25,26,
previous approaches only incompletely took into account that
protein cost lies in the process of their production (cf. ref. 26) or
even assumed that proteins can be produced at any rate13–16,19.

Here we use dynamic optimization to investigate how
limitations in protein production capacity influence the optimal
timing of the production of enzymes to activate a metabolic
pathway. We find that the interplay between the protein
production capacity of the cell and the amount in which a
particular enzyme needs to be produced (that is, its abundance)
can explain the optimality of a wide variety of pathway activation
strategies. In particular, we find that the previously reported
sequential activation strategy of enzymes along a pathway13–19 is
only optimal if large amounts of proteins need to be produced,
whereas the simultaneous activation of all enzymes within a
pathway is optimal in the case where only small amounts of
protein need to be produced. Thus, we show that, depending on
protein abundances, an operonic organization of a metabolic
pathway is optimal to reduce activation time, whereas previous
work postulated activation time-independent effects to explain
the operonic organization of metabolic pathways18,23. Moreover,
we observe that, if there are differences in the abundance of
enzymes of a pathway, it is optimal to produce enzymes with high
abundance earlier and to delay the production of enzymes with
low abundances.

Results
Enzyme synthesis capacities influence activation strategies. We
consider the activation of a metabolic pathway that comprises
four enzymatic steps e1, y, e4 that convert a buffered substrate S

via three intermediates Y1, y, Y3 into a product P (Fig. 1a,
Methods). In many cases, the activation of a particular pathway is
required to resume growth, for instance, if an amino acid that has
been depleted from the growth medium has to be synthesized. If a
particular pathway product p(t) has a fixed proportion in cellular
biomass, growth cannot resume unless the pathway product is
present in sufficient quantities. An example for a mechanism
implementing such a pathway-dependent growth control is the
stringent response in E. coli that arrests growth if there is a lack of
amino acids27. Therefore, we introduce an objective function that
maximizes biomass formation limited by the synthesis of the
product of the considered pathway

max
eðtÞ; mðtÞ

Ztf

0

m tð Þ � p tð Þdt ð1Þ

where m is the growth rate. Here the time courses of the enzymes
e1(t), y, e4(t) and growth rate profile m(t) are determined to
maximize the objective function. As we consider the activation of
the pathway to an active state, which is maintained after
activation, a large final time tf is defined (assumed to be
tf¼ 1,000 arbitrary time units). By explicitly taking into account
the growth rate in the course of pathway activation, we are able to
more precisely model the influence of dilution through growth on
pathway activation.

The concentration of an enzyme ej(t) is determined by two
factors: the enzyme synthesis rate dj(t) and the dilution through
growth m(t) � ej(t). We assume that dilution through growth is the
major source for protein degradation as it has been reported
previously for E. coli28. There are two constraints on enzyme
synthesis rate: the synthesis capacity of individual enzymes and
the free protein synthesis capacity of the cell. For each enzyme,
there is an upper bound on the rate at which it can be
synthesized, dj,max. This upper bound is determined by several
factors such as the maximal copy-number of the associated
messenger RNA and its translation efficiency29. Depending on
the required concentration of an enzyme for an active pathway
(that is, its abundance), both factors can be adjusted in the course
of evolution to increase and decrease the production capacity of
the enzyme. In consequence, enzyme abundance is a major
determinant in the maximal production capacity of an enzyme.
Thus, the time course of ej is determined by

_ejðtÞ ¼djðtÞ�mðtÞ � ejðtÞ
djðtÞ
�� �� � dj;max:

ð2Þ

The free protein synthesis capacity corresponds to the maximal
amount of protein that can be produced by free ribosomes of the
cell within a specific time interval. We use the constraint based on
free-protein synthesis capacity to account for the synthesis of
other proteins by ribosomes that need to be produced to maintain
cell viability30. The free protein synthesis capacity is mainly
determined by ribosomal concentrations, total mRNA concentra-
tions, transfer RNA concentrations and the availability of
substrates for protein synthesis. Thus, we formulate the con-
straint on free-protein synthesis capacity, dmax, within a specific
time interval by Xi

j¼1

djðtÞ
�� �� � dmax: ð3Þ

In the first step, we analysed the influence of the interplay
between individual enzyme synthesis and free protein synthesis
capacity on optimal pathway activation strategies for a prototypic
metabolic pathway with unit kinetic parameters (Fig. 1a).

If the sum of individual enzyme synthesis rates is equal (or
smaller) than the free protein synthesis capacity, all enzymes can
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be produced at the same time and, hence, they are induced
simultaneously for a rapid pathway activation (Fig. 1b). To give a
clear illustration, we reduced the plotted time window to the
dynamics of the pathway activation (the complete profiles are
shown in Supplementary Fig. S1). In Fig. 1d, we consider the case
where each individual enzyme synthesis rate is equal to the free
protein synthesis capacity. This corresponds to enzymes that have
to be produced in large amounts. For this scenario, we observe a
sequential activation of enzymes according to their order within
the pathway. This type of activation strategy is similar to the
so called ‘just-in-time-activation’ strategy19, also reported in
other studies13–16. In the case in which each individual enzyme
synthesis rate is smaller than the free protein synthesis capacity
but their sum is larger than the free protein synthesis capacity,
we observe an intermediary behaviour in which parts of the
metabolic pathway are sequentially activated (Fig. 1c). The
influences of the different constraints on optimal pathway
activation strategies are summarized in Fig. 1e.

To investigate the influence of kinetic parameters on the
optimization runs in the previous section, we repeated the
optimization for 100 uniformly sampled kinetic parameter sets
from the interval [0,2] for several values of the individual enzyme
synthesis capacity.

Although a sequential or partial sequential activation of
enzymes within the model pathway is often optimal, we observed
many cases in which the order of activation is rearranged such
that the production of later steps of the pathway is induced before
the induction of earlier steps. A closer investigation showed that
the rearrangement of the activation sequence from the order of
reactions in the pathway is because of differences in the
abundance of individual enzymes caused by differences in their

catalytic efficiency. We observed that enzymes that need to be
present in higher amounts relative to the other enzymes of the
pathway are induced earlier than enzymes with average
abundances as their production takes longer (Fig. 2). Moreover,
we observed that enzymes whose abundance is low relative to
the other enzymes of the pathway tended to be activated later
than surrounding enzymes of the pathway (Fig. 2). For similar
plots for all considered individual enzyme synthesis rates see
Supplementary Fig. S2.

Influence of activation strategies on operonic organization. To
validate the prediction of the optimality of different type of
activation strategies depending on enzyme synthesis constraints,
we used the operonic organization of enzymes belonging to the
same metabolic pathway. Please note that we use the term
‘operon’ synonymously for ‘transcription unit’ for the sake of
clarity although, strictly speaking, an operon needs to be com-
posed of at least two genes. An important feature of operons is
that the genes contained within them are expressed almost
simultaneously21,22. Thus, in contrast to a regulon, where several
genes are controlled by the same transcription factor, and can be
activated at the same time or in a sequential fashion, the operonic
organization of genes always leads to their almost simultaneous
activation. An important conclusion of our predictions is that the
number of genes that are activated simultaneously should
decrease with increasing enzyme synthesis rates relative to the
free-protein synthesis capacity. To test this hypothesis in our
optimization runs, we assumed that genes that are activated
within a certain time span belong to the same operon (Methods)
and determined the average number of genes per operon (GpO)
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for different values of the individual enzyme synthesis rates.
Plotting the average number of GpO over different individual
enzyme synthesis rates, we observed a decreasing size of operons
with increasing individual enzyme synthesis rates (Fig. 3a). Thus,
when individual enzyme synthesis rates are increasing relative to
free protein synthesis capacity, the size of operons decreases.

Another important aspect of our optimization is that,
depending on their abundance relative to the remaining enzymes
of the pathway, enzymes should be earlier or later activated.
Translated into the terms of genes that are coexpressed together
in operons, we would expect that genes that have higher abun-
dances relative to other enzymes of a pathway tend to be
coexpressed with earlier enzymes of the same pathway, whereas
enzymes with lower abundance should be coexpressed with later
enzymes of the pathway.

To test whether we could find this relationship in our
optimization runs, we determined the distribution of the
positional coexpression bias values of low abundance and high
abundance enzymes across our optimization experiments
(Fig. 3b). This distribution indicates how often a specific set of
enzymes is coexpressed (that is, within the same operon) with
earlier or later enzymes of the same pathway (Methods). We
compared the distribution of the positional coexpression bias
with the optimized operon structure to the distribution we
obtained for a random assignment of genes to operons. We found
that low abundance enzymes are significantly more often
coexpressed with later enzymes of a pathway (Wilcoxon test
P-value¼ 6.61� 10� 4), whereas high abundance proteins are
significantly more often coexpressed with earlier enzymes of a
pathway (Wilcoxon test P-value¼ 3.38� 10� 7).

Genomic signatures of activation strategies. To test whether the
interplay between enzyme synthesis rates and free-protein

synthesis capacity has the predicted influence on pathway acti-
vation strategies, we analysed the operonic organization of
metabolic pathways across all the pathways contained in 550
prokaryotes of the MicroCyc collection31, for which information
on the operonic structure from MicrobesOnline is available32. We
tested two types of predictions. First, we investigated the influence
of enzyme synthesis rates and free protein synthesis capacity on
the size of the operons of specific metabolic pathways. Second, we
analysed the influence of protein abundance on the order in
which proteins within a pathway are activated. To exclude the
possibility that there is a general trend for operon sizes to
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decrease with increasing protein abundance that is unspecific for
metabolic pathways, we determined the correlation between
protein abundance and operon size for each of the 550 organisms
from MicroCyc. We found that in the vast majority of organisms,
operon sizes increase with protein abundances, which is opposite
to our predictions (Supplementary Note 1).

As measurements on enzyme synthesis rates/protein abun-
dance and free protein synthesis capacity are not available across
all of the organisms that we consider, we used genomic features
that have a strong influence on these variables for each
organism. There are two important factors influencing the free
protein synthesis capacity of a cell. The first is the concentration
of ribosomes in the cell and the second is the number of protein-
coding genes in the genome of an organism. As a reference for
the protein synthesis capacity of an organism, we used the copy-
number of the ribosomal RNAs in its genome. A correlation
analysis across several species shows that there is a strong
correlation between both factors (see Supplementary Note 2).
Another factor that has a strong influence on the free protein
synthesis capacity of an organism is the number of protein-
coding genes contained within its genome. If the enzymes
of a pathway need to be expressed, only a small fraction of the
entire cellular protein synthesis capacity will be allocated to
the production of these proteins, as proteins required for
other functions of the cell need to be produced at the same
time30. Hence, if considering all other factors such as total
ribosomal capacity as equal, an increasing number of protein-
coding genes within a genome will reduce the free protein
synthesis capacity that can be reallocated to the production of
the enzymes of a pathway. This is confirmed by a strong positive
correlation between the number of protein-coding genes and the
copy-number of ribosomal RNAs across 130 species (see
Supplementary Note 2).

One genomic feature that is often used as a proxy for protein
abundance is the codon adaptation index that is computed from
the coding sequence of a gene33. This measure determines the
expression strength of a protein by comparing its codon usage
with the codon usage in high-expressed genes33 such as ribosomal
genes. In Supplementary Notes 3 and 4, we show that codon
adaptation indices are a good proxy for protein abundance and
are comparable across species.

Enzyme synthesis capacities influence operon sizes. Following
the prediction of our optimization results, we expect that the
number of protein-coding genes, the number of rRNA operons as
well as enzyme abundance have an influence on the size of
metabolic operons. First, we expect the size of the operons, across
which the genes of a pathway are distributed, to decrease with an
increasing number of protein-coding genes because of a con-
comitant decrease in the free protein synthesis capacity
(hypothesis 1). Second, we expect the size of the operons of a
pathway to increase with an increasing number of rRNA operons
because of an increase in the free protein synthesis capacity
(hypothesis 2). Third, we expect the size of the operons of a
pathway to decrease with an increase in the average abundance of
enzymes within this pathway (hypothesis 3).

We tested these hypotheses across the metabolic pathways of
550 prokaryotes contained in MicroCyc31. We analysed only
metabolic pathways that are present in at least 100 organisms (99
metabolic pathways). To analyse the above hypotheses, we
determined for each organism and each pathway the number of
operons across which this pathway is distributed. Then we com-
puted the Spearman’s correlation between the factors outlined in
the hypotheses while controlling for the other investigated factors.
Moreover, to exclude effects outside metabolism that have an

effect on operon sizes, we also controlled for the average size of
non-metabolic operons for each organism. For more information
about how we controlled for confounding influences on operon
sizes, see the Methods section and Supplementary Note 5.
Subsequently, we corrected all of the resulting P-values for
multiple testing using the Benjamini–Yekutieli procedure34, and
only accepted correlations as significant if they were below a false
discovery rate of 5%.

For 69 of the 99 pathways, we found at least one significant
correlation for one of the tested hypotheses (Table 1). For detailed
information including P-values across all 99 tested pathways, see
Supplementary Data 1–7. Overall, hypothesis 1 is confirmed for
22 of the 99 pathways and rejected (that is, significant correlation
in the opposite direction) for 4 pathways. Hypothesis 2 is con-
firmed for 29 pathways and rejected for 9 pathways. Hypothesis 3
is confirmed for 32 pathways and rejected for 8 pathways. Of the
69 metabolic pathways with at least one significant correlation, 20
fulfill at least two of the hypotheses and 5 fulfill all of the
hypotheses (Table 1). We found only two pathways for which two
of the hypotheses are rejected. Among the pathways that fulfilled
at least two hypotheses, we found 6 pathways associated
to amino acid biosynthesis (among 15 such pathways in the
99 pathways), 3 pathways associated to nucleotide biosynthesis
and several pathways associated to producing cofactors. Of the
five pathways for which all three hypotheses are confirmed, three
belong to amino-acid biosynthetic pathways (leucine, proline and
tryptophan biosynthesis).

These results show that, although not all hypotheses are con-
firmed at the same time for many pathways, individual enzyme
synthesis rates and free protein synthesis capacity have a strong
influence on the size of metabolic operons. This is apparent from
the much larger number of 83 confirmations of our hypotheses in
comparison with only 21 rejections across all pathways. More-
over, our analysis focuses on pathways whose products are
essential for growth. Not all biomass components can be
considered equally important for growth and the evolutionary
pressure to implement the activation programmes that we pro-
pose is expected to be higher for products that are of central
importance during most growth transitions. This is exemplified
by amino acid biosynthetic pathways, whose activation is essential
for a resumption of growth under most conditions. Among the 99
pathways that we considered in our analysis, 15 belong to amino-
acid biosynthesis. Considering the 20 pathways for which at least
two hypotheses were fulfilled, 6 correspond to amino-acid
biosynthetic pathways, which is a significant enrichment
(hypergeometric test P-value¼ 1.1� 10� 2).

Protein abundance influences the timing of activation. A sec-
ond important prediction of our optimization approach is that
the abundance of an enzyme relative to the remaining enzymes
of a pathway should have an influence on the order of activation
of these enzymes. Reanalyzing the data of previous works on the
timing of the activation of enzymes in the arginine biosynthetic
pathway of E. coli19 confirms this result: ArgG, which is the
most abundant enzyme of arginine biosynthesis6, is activated
much earlier than the surrounding steps of the pathway
(Supplementary Note 7 and Supplementary Fig. S3). In their
work, Zaslaver et al.19 argued that this discrepancy might be
because of pathway topology as ArgG condenses the products of
two branches of the arginine biosynthetic pathway. However, we
show that our findings also apply to linear chains of reactions
that are embedded into more complex pathway topologies
(Supplementary Fig. S3).

If protein abundance has the predicted influence on the order
of activation of enzymes within a pathway, we would expect that
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Table 1 | Validation of pathway activation strategies
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92.052.0-32.0-901I noitadarged sedisoelcunobir enidimiryp
50.052.020.0214)ciboreana( noitaripser
80.0-62.0-20.0052sisehtnysoib enires
52.082.061.0-962sisehtnysoib emehoris
60.043.031.0192)shportotua etagilbo( IV elcyc ACT
10.052.040.0483I sisehtnysoib elorrypartet
54.0-50.042.0101I noitadarged eninoerht
82.0-02.071.0-634sisehtnysoib nahpotpyrt
62.061.0-30.0731I sisehtnysoib enisoryt
11.0-91.030.0-072)citoyrakorp( sisehtnysoib 8-loniuqibu

UDP-N -acetyl -D-glucosamine biosynthesis I 462 0.04 -0.17 -0.11
UDP-N -acetylmuramoyl-pentapeptide biosynthesis III 467 0.39 -0.28 -0.19

41.0-51.0-72.0022noitadarged etahpsohp-'5 enisoni/sisehtnysoib etaru
50.033.091.0-264sisehtnysoib etahpsohp-'5-enidiru
81.0-02.040.0904sisehtnysoib enilav
21.0-82.0-10.0612VI noitadarged esolyx

Test of hypotheses on factors influencing operon sizes for different metabolic pathways across the organisms of the MicroCyc collection31. The first column denotes the name of the pathway, the second
column the number of organisms in which it occurs and the next three columns the Spearman’s correlation of the relationship between operon size and the factors considered by hypotheses 1–3. These
relationships are: ‘hypothesis 1’: correlation between genes per operon (GpO; of the specific metabolic pathway) and number of protein-coding genes; ‘hypothesis 2’: correlation between GpO and
number of rRNA operons; ‘hypothesis 3’: correlation between GpO and average codon adaptation index of enzymes of the pathway. The correlations are highlighted in green if the correlation is significant
at a false discovery rate (FDR) of 5% and agree with the prediction of the corresponding hypothesis. Correlations are highlighted in light green if they are significant at a FDR of 20%. Correspondingly,
correlations are highlighted in red and light red if they are significant at a FDR of 5% and 20%, respectively, but disagree with the corresponding hypothesis. Only pathways with at least one significant
correlation at a FDR of 5% are shown.
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abundant enzymes tend to be expressed together with earlier
steps of the same pathway, whereas less abundant enzymes are
more often coexpressed with later steps of the same pathway. To
test this relationship, we computed the average coexpression bias
of high and low abundance enzymes across all organisms of the
MicroCyc collection. As described above, the average coexpres-
sion bias of an organism for high and low abundance enzymes
indicates how often a specific set of enzymes is coexpressed with
earlier or later steps of a pathway. To exclude effects that result
from dependencies between pathway position and protein
abundance, we compared, for each organism, the average
coexpression bias that can be obtained for the actual operon
structure with the average coexpression bias of a randomized
operonic organization (see Methods). The actual operonic organi-
zation leads to a significantly later activation of low abundance
enzymes compared with the randomized operon structure
(Wilcoxon test P-value¼ 1.1� 10� 8, Fig. 4). The average
positional coexpression bias for each organism can be found in
Supplementary Data 3. For high abundance enzymes, we find that
they are activated significantly earlier through the actual operonic
structure in comparison with a randomized operonic structure
(Wilcoxon test P-value¼ 2.1� 10� 4, Fig. 4). Thus, as predicted
by the optimization, the operonic structure of metabolic pathways
is tuned to a later activation of low abundance enzymes, whereas
high abundance enzymes tend to be activated earlier.

Discussion
In this work, we used dynamic optimization for the identification
and validation of optimal regulatory strategies for controlling
metabolic pathways across a large number of metabolic pathways
in several hundred prokaryotes. We based our investigation on the
assumption of limitations in individual and free protein biosyn-
thesis capacities26. The results of the dynamic optimization and the
validation show that protein abundance is an important factor
influencing the type of regulatory programme that is used to
control metabolic pathways. Whereas a low abundance of proteins
leads to the optimality of a simultaneous activation of all enzymes

of a pathway, a sequential activation of enzymes is optimal in case
of high abundance proteins. Depending on the relative abundances
of enzymes within a pathway, particularly abundant enzymes are
activated much earlier than the preceding reaction steps, whereas
enzymes with low abundance tend to be activated later than the
neighbouring steps of the pathway. Thus, in contrast to the results
of previous works, we show that the sequential activation of
enzymes along a pathway, known as ‘just-in-time activation’, is
only a special case for quick pathway activation. Another important
conclusion that can be drawn from our results is that, depending
on environmental conditions, there can be a shift in the optimal
programme to activate a pathway. As ribosomal capacity correlates
with growth rate, it is optimal to simultaneously activate the
enzymes within a pathway in a condition supporting high growth
rates while it could be optimal to sequentially activate enzymes in a
condition only supporting low growth rates. This observation can
explain why the sequential activation of the arginine biosynthetic
pathway reported in E. coli19 was not observed in conditions
supporting higher growth rates in a recent work35.

As an important factor that is representative of the specific type
of regulatory programme that is used to control a metabolic
pathway, we identified the operonic organization of enzymes
within a pathway. The correlations between genomic features as
well as operon sizes for different metabolic pathways that we
determined show that operon sizes decrease with increasing
protein abundance and increase with increasing protein synthesis
capacity. Thus, the interplay between protein abundance and
constraints in protein synthesis capacity also represents an
important driving force in the growth and decline of metabolic
operons. As the optimal abundance of proteins as well as the
protein synthesis capacity of an organism change in the course of
its evolutionary history, the optimal operonic organization of
metabolic pathways constantly changes. Thus, protein abundance
as well as protein synthesis capacity are important contributors to
the often observed high evolutionary plasticity of operons36,37.

We expect that our results are of high importance also beyond
the level of metabolism, for instance, for the production of
complex molecular machineries such as flagella38 or in stress
responses39 that require the production of large amounts of
protein. Moreover, our results are of relevance for biotechnologi-
cal applications as they provide guidelines about how a
production process should be initiated on the enzymatic level
to maximize yield of the product while minimizing the burden on
the target organism.

Methods
Optimal regulatory strategies of metabolic pathways. In this work, we consider
the activation of a metabolic pathway with a buffered substrate shown in Fig. 1a.
Taking into account the dilution of intermediates by growth rate m(t), we obtain:

x: ðtÞ ¼ N � vðxðtÞ; eðtÞÞ� mðtÞ � xðtÞ ð4Þ

xðtÞ ¼ y1ðtÞ; y2ðtÞ; y3ðtÞ; pðtÞ½ �T ; ð5Þ

eðtÞ ¼ e1ðtÞ; e2ðtÞ; e3ðtÞ; e4ðtÞ½ �T ; ð6Þ

and

N ¼

1 � 1 0 0
0 1 � 1 0
0 0 1 � 1
0 0 0 1

2
664

3
775: ð7Þ

The kinetic behaviour of metabolites is modelled by irreversible Michaelis–
Menten kinetics

v1 ¼ e1ðtÞ � kcat;1 �s
KM;1 þ s ; vk ¼ ekðtÞ � kcat;k �xk� 1ðtÞ

KM;k þ xk� 1ðtÞ
k ¼ 2; :::; i

ð8Þ

−4 −2 0 2 4

High abundance enzymes
(randomized operons)

High abundance enzymes

Low abundance enzymes
(randomized operons)

Low abundance enzymes

Average positional coexpression bias

Figure 4 | Protein abundance has an influence on the timing of pathway

activation in vivo. We determined the average positional coexpression bias

for each organism of the MicroCyc collection31 for low and high abundance

enzymes, given the actual operon structure (orange values) and a

randomized operon structure (blue values). Each point corresponds to the

average positional coexpression bias of an organism. Lines indicate the

distribution of these values. Black bars denote the median of each

distribution. Only data for organisms that had at least one low abundance

enzyme or high abundance enzyme coexpressed with at least one other

enzyme in an operon in the pathway shown (293 and 327 organisms,

respectively).
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with the buffered substrate s¼ 1 (arbitrary concentration unit), for example, (here
i¼ 4). The kinetic parameters are set to

kcat;i ¼ KM;i ¼ 1; j ¼ 1; :::; i ð9Þ

or randomly chosen. The initial concentrations are x1(0)¼ x2(0)¼ x3(0)¼
x4(0)¼ 0 (arbitrary concentration units) by assuming a complete inactive pathway.
We modelled the enzyme profiles by differential equations for each enzyme with

_ejðtÞ ¼ djðtÞ� mðtÞ � ejðtÞ; ejð0Þ ¼ 0; ejðtÞ � 0; j ¼ 1; :::; i ð10Þ

including dilution due to cell growth. We considered a corresponding maximum
slope due to enzyme synthesis rates by

djðtÞ
�� �� � dj;max; j ¼ 1; :::; i ð11Þ

and the free protein synthesis capacity by

Xi

j¼1

djðtÞ
�� �� � dmax: ð12Þ

where dmax¼ 0.01. Furthermore, we also integrated the influence of an optimal
time varying growth by an additional differential equation for growth rate

_mðtÞ ¼ dmðtÞ; mð0Þ ¼ 0: ð13Þ
This can be interpreted as a dynamic adaption of growth rate due to environmental
changes. We choose also a maximum adaption rate

dmðtÞ
�� �� � dm;max ð14Þ

on the basis of a separate time domain, which is slower than the enzyme synthesis
(here dm,max¼ 0.001).

During pathway activation, the constraints in enzyme synthesis and growth
adaption could cause high accumulations of metabolites, which are harmful to the
cell6,17. We took this limitation into account by constraining total metabolite
concentration with O¼ 4 by

Xi

j¼1

xjðtÞ �O: ð15Þ

The continuous optimization problem was transformed to a nonlinear
programming problem by the quasi-sequential approach40. The quasi-sequential
approach was extended to handle approximation errors in moving finite element
strategies (called qMFE), with constraints on state and optimization variables41. In
this work, we used qMFE also for problems with fixed final time to identify optimal
time profiles independent of a predefined element placement. The optimal time
courses of the enzymes ej(t) and growth rate profile m(t) were computed
numerically by using dj(t) and dm(t) as decision variables. As we used a gradient-
based approach42, to avoid local optima, we solved the problem 100 times with
random initializations of the decision variables and choose only the results with the
best objective value.

Evaluation of optimization results. To determine the position in the activation
sequence (Fig. 2), we sorted the activation times of enzymes in increasing order and
determined for each enzyme its position in this ordered list. For the runs with
randomized kinetic parameters, the abundances of enzymes (defined as the con-
centration after pathway activation) were normalized to an average of 1. We
defined an enzyme as low abundant if its normalized abundance was o1 divided
by 1.1 and as high abundant if it was 41.1.

To determine the number of GpO, we grouped enzymes together in an operon
if their activation time was not more than 1 time unit of the optimization apart
(total simulation time was tf¼ 1,000 time units). The activation time tactive,j of
enzyme j was determined as the time when ej(tactive,j)Zdj,max, that is, when the
concentration of enzyme j is above its maximal synthesis capacity for a time unit.

For a given operonic organization resulting from the optimization, we
determined the distribution of the positional coexpression bias as follows. First, we
grouped enzymes according to the above definition into the sets ‘low abundant’ and
‘high abundant’. Then we determined for each co-occurrence of an enzyme within
the high and low abundance sets with any other enzyme of the pathway in an
operon the positional coexpression bias, that is, the distance in reaction steps. For
instance, if the high abundance enzyme e3 (that catalyses reaction 3) appears
together with e1 (that catalyses reaction 1) in an operon, this distance is � 2
(relative to enzyme e3). For the low abundance enzyme e2, which occurs in the
same operon like e4, this distance is þ 2. To construct the histogram in Fig. 3b, we
counted the number of occurrences of each possible coexpression bias value and
determined the frequency of each value for low and high abundance enzymes
independently. We compared the distribution of positional coexpression values
with the distribution we obtained from a purely random operonic organization. To
this end, we determined the coexpression bias values for an operonic organization
in which the identity of genes belonging to each operon has been randomly
reassigned. To avoid bias due to a single randomization of operon structure, the
distribution of coexpression bias from randomized operons summarizes the overall
distribution obtained from 100 independent experiments with randomized
operons.

Genome annotation and codon adaptation indices. The operon structure for the
considered organisms was downloaded from MicrobesOnline32. General
information on the number of protein-coding genes, sets of metabolic and non-
metabolic genes, the copy-number of the rRNA operons and detailed information
on the genome annotation of the organisms within MicroCyc31 were obtained from
the PathwayTools43 files provided with the database. We could map information
on operonic structure obtained from MicrobesOnline to 550 organisms from the
MicroCyc collection. The codon adaptation indices contained within MicroCyc
were provided by David Vallenet.

Pathway structure and operonic organization. To determine linear chains of
reactions considered in our optimization, we used information on pathway
structure provided from MetaCyc44. This database contains detailed layout
information for each pathway that also allowed us to determine actual substrates
and products within the pathway as well as cofactors. On the basis of the layout, we
determined the reaction graph of each pathway (as displayed on the web interface
of each pathway in the MetaCyc database) and defined the sequence of reactions
within each pathway as the longest path between a metabolite that is not produced
by any reaction of that pathway (pathway substrate) and a metabolite that is not
produced by any other reaction of that pathway (pathway product).

We determined the enzymes associated to each pathway as those that occurred
in the longest path, as defined above. The number of GpO was computed as the
number of enzymes associated to the pathway divided by the number of operons
across which these enzymes are distributed.

The average positional coexpression bias of low and high abundance enzymes of
an organism was determined as follows. First, an enzyme was defined as low
abundant if its codon adaptation index minus the average codon adaptation index
of enzymes within a pathway was below � 0.1 (codon adaptation indices range
from 0 to 1). Enzymes were defined as high abundant if their codon adaptation
index minus the average codon adaptation index of enzymes within the pathway
was above 0.1. Results did not change significantly for small changes in these
threshold values. For each organism, we determined the distribution of the
positional coexpression bias values for high and low abundance enzymes for the
actual and the randomized operonic structure, as in the analysis of the positional
coexpression bias from the optimization results. We did not consider enzymes
occurring in the same operon if they are associated to the same reaction to exclude
bias due to enzymes that are coexpressed because they occur in a multi-enzyme
complex. Subsequently, we determined the average positional coexpression bias for
low and high abundance enzymes with actual and randomized operonic structure
as the mean of the corresponding distributions.

Statistical tests. In the analyses of hypotheses about genomic features influencing
operon sizes across different species, we considered the influence of the factors
‘ribosomal RNA copy-number’, ‘number of protein-coding genes’, ‘average codon
adaptation index of proteins in the pathway’ (as a proxy for protein abundance)
and ‘average non-metabolic operon size’. In all analyses, we determined the
influence of each factor independently from the other factors on the size of operons
in which enzymes for each particular pathway are organized. To this end, we
computed partial correlations between each factor and operon sizes while con-
trolling for the other investigated factors. Thus, when testing hypothesis 1 for a
specific pathway (relationship between operon size and number of protein-coding
genes), we computed the partial Spearman’s correlation between the operon size of
genes of the specific pathway and the number of protein-coding genes while
controlling for the number of rRNA operons, average protein abundance within
the pathway and the average size of non-metabolic operons. Statistical evaluations
were performed using R45. Partial correlations were computed using the R package
ppcor.

To test whether phylogenetic dependencies between species have an influence
on our results, we repeated our analyses with reduced organism sets in which
organisms belonging to particular clades were randomly removed. As described in
Supplementary Note 6, we could confirm that our results also apply to subsets of
species from the MicroCyc collection.
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