Figure 5: Effect of intensity noise-induced heating.
From: Cavity cooling of free silicon nanoparticles in high vacuum

(a) Normalized scattering SN (blue) of a third nanosilicon particle. (b) During a part of the trajectory, the intensity of the cavity field Ic (red) incidentally fluctuates with a time delay to SN such that the particle is accelerated (heating). We extract the energy of the channelled particle by measuring the distance between the fitted Gaussian envelope (orange) and the turning points of the trapping oscillation (dashed black line). The energy results from the product of this difference and the cavity intensity (red curve). We find an increase of the transverse energy by ~14% over 40 μs. (c) Close to the centre of the Gaussian beam, the particle-induced intensity modulation dominates the intensity noise. Therefore, the particle is cooled. The overall cooling during the entire transit time by more than a factor of 8 is reflected in the asymmetry of the scattering curve (a).