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Ginzburg–Landau-type theory of spin
superconductivity
Zhi-qiang Bao1, X.C. Xie2,3 & Qing-feng Sun2,3

Spin superconductivity is a recently proposed analogue of conventional charge super-

conductivity, in which spin currents flow without dissipation but charge currents do not. Here

we derive a universal framework for describing the properties of a spin superconductor along

similar lines to the Ginzburg–Landau equations that describe conventional superconductors,

and show that the second of these Ginzburg–Landau-type equations is equivalent to a

generalized London equation. Just as the GL equations enabled researchers to explore the

behaviour of charge superconductors, our Ginzburg–Landau-type equations enable us to

make a number of non-trivial predictions about the potential behaviour of putative spin

superconductor. They enable us to calculate the super spin current in a spin superconductor

under a uniform electric field or that induced by a thin conducting wire. Moreover, they allow

us to predict the emergence of new phenomena, including the spin-current Josephson effect

in which a time-independent magnetic field induces a time-dependent spin current.
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S
uperconductivity was discovered about a century ago1. It
has attracted worldwide attention owing to its fascinating
properties and many applications. It is still one of the

central subjects in condensed matter physics. The mechanism of
superconductivity can be understood by the Bardeen–Cooper–
Schrieffer (BCS) theory2, which shows that electrons in the
superconductor can form Cooper pairs and condense into the
BCS ground state. Each Cooper pair contains electric charge 2e,
and usually is spin singlet. Recently, a new quantum state,
named the spin superconductor, was proposed3,4. The spin
superconductor is the counterpart of the charge supercon-
ductor. It is formed by condensed bosons in sufficiently low
temperatures. The bosons are electrically neutral and their spins
are non-zero. On one hand, the spin superconductor allows
dissipationless flow of spin current and the spin resistance is zero.
On the other hand, the charge current cannot flow through it and
it is a charge insulator. Moreover, an electric Meissner effect
against a spatial varying electric field exists in the spin
superconductor3. The spin superconductivity may exist in spin-
polarized triplet exciton systems of the graphene3–10, some three-
dimension ferromagnetic materials, Bose–Einstein condensate of
magnetic atoms, 3He superfluidity and so on. Furthermore, the
BCS-type theory, London-type equations and spin-current
Josephson effect in the spin superconductor have also been
presented3.

In the history of superconductivity, another well-known
theory, named the Ginzburg–Landau (GL) theory11, has also
had an important role. The GL theory gives the
phenomenological description of the superconductivity. In this
Article, we derive the GL-type equations of the spin
superconductor. Moreover, we show that the second GL-type
equation is the generalized London-type equation, and analyse
the characteristic parameters of the spin superconductor.
Furthermore, we use the GL-type equations to calculate the
super spin current in a spin superconductor under a uniform
electric field and the super spin current where a thin charged wire
is brought into the vicinity of a quasi two-dimensional (2D) spin
superconductor. Finally, we use the GL-type equations to study
the spin-current Josephson effect of the spin superconductor. We
show the DC spin-current Josephson effect, the AC spin-current
Josephson effect and the effect of an external electric field.

Results
The GL-type equations of spin superconductors. To derive the
GL-type equation, we should first write out the free energy of the
system. For the spin superconductor under an external electric
field E, the free energy can be represented as Fs ¼

R
d3rfs, where

fs ¼ fn þ aðTÞ j cðrÞ j2 þ 1
2
bðTÞ j cðrÞ j 4þ 1

2m�

j ð� i�hrþ a0s�rjÞcðrÞ j2 þ 1
2
E0ðrjÞ2 ð1Þ

In equation (1), cðrÞ is the quasi-wave function of the spin
superconductor. fs and fn are densities of free energy of the
superconducting state and normal state, respectively.
a(T)j cðrÞ j2 and 1

2 bðTÞ j cðrÞ j4 are the low-order terms in the
series expansion of the free energy fs, which are the same as
the terms in the free energy of the charge superconductor11. The
specific expressions of a(T) and b(T) can be obtained using
the method proposed by Leggett12. Similar calculations manifest
that they are also the same as the charge superconductor.
1

2m� j ð � i�hrþ a0s�rjÞcðrÞ j2 can be seen as the kinetic energy
and the spin–orbit coupling term, where m* is the effective mass
of the carriers and a0 is the coefficient of the spin–orbit coupling.
The usual form of the spin–orbit coupling term is

�a0s � ðp�EÞ ¼ �a0p � ðE�sÞ, where �a0 ¼ e
2m�2c2 and p ¼ � i�hr.

Here we consider the Hamiltonian being 1
2m� ðpþ a0s�rjÞ2 ¼

p2

2m� þ �a0p � ðE�sÞþ m��a20
2 ðE�sÞ2 with a0 ¼ m��a0, in which the

first and second terms are the kinetic energy and the spin–orbit

coupling, respectively. The third term m��a20
2 (E� s)2 is very small

and is usually ignored. However, this term cannot be omitted in
our derivation, because it contains the electric field E and its
variation is not small. In fact, if we start with the Dirac equation
of an electron in a potential j and vector potential A, and
take the non-relativistic limit, the canonical kinetic momentum
can be written as13 pcanonical¼ � i:rþ e

cAþ a0s�rj, thus

H¼ p2canonical
2m� ¼ 1

2m�(pþ a0s�rj)2 for the charge-neutral carrier.
Similar with the vector potential A, the s�rj term has a role of
a SU(2) gauge vector potential. In addition, if we start from the
Hamiltonian H¼ 1

2m�(pþ a0s�rj)2�m .B, and use the
Hamilton canonical equations, we can get the correct equation
of motion of a magnetic moment in the external electric field and
magnetic field. In above expression, the field E has been written as
�rj. This is reasonable because r�E¼ 0 is always tenable in
our system14–16. The last term 1

2E0 (rj)2 in equation (1) is the
energy of the electric field. Note that the electric field E contains
both the external field and the field induced by the super spin
current. Next, we can use the variational method to obtain the
GL-type equations.

If we minimize the free energy with respect to the complex
conjugate of the wave function, we get equation (2):

acþ b j c j2 cþ 1
2m� � i�hrþ a0ðs�rjÞ½ �2c ¼ 0 ð2Þ

In this derivation, we use the boundary condition:

� i�hrþ a0ðs�rjÞ�n cðrÞ ¼ 0
�

ð3Þ
If we minimize the free energy with respect to the electric

potential j, we get equation (4):

r ¼ r � i�ha0
2m� ðc

�rc�crc�Þ
��

� a20
m� j c j 2 ðs�rjÞ

�
�s

�
ð4Þ

where r¼ � E0r2j is the charge density.
Equations (2) and (4) are the centre results of this paper.

They are the first and second GL-type equations of the spin
superconductor. This GL-type equations are universal to all
spin superconductors and can also be used to study most of
their properties and behaviours, including the electric Meissner
effect, the spin-current Josephson effect, the proximity effect and
their responses under an applied electromagnetic field. To see
the physical meaning of equation (4) clearly, we make a
simple transformation. We use the standard spin-current
definition15,17–19

js ¼ Reðc�v̂cÞ ¼ i�h
2m� ðcrc� �c�rcÞ

þ a0
m� j c j2 ðs�rjÞ ð5Þ

with the velocity operator v̂. Equation (4) is written as
r¼ �r � (js� a0s). Here js is the super spin current. As the
spin is a vector, the spin current is a tensor product of the carrier
current and the spin vector15,17–19. However, the direction of the
spin is fixed in the spin superconductor; thus, we can use a vector
js, which describes the carrier current to represent the super spin
current. The GL equations in equations (2) and (4) are time
independent and we can obtain r � js¼ 0 from them. It is the
special case of the continuity equation when the system is time
independent. As the usual spin current, the super spin current js
can generate an electric field E in space14–16, which is the same as
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that generated by the electric dipole moment. js� a0s is the
equivalent electric dipole moment Pe. Next, r¼ �r �Pe can be
seen as the equivalent charge induced by the spin current. Thus,
the second GL-type equation describes the equivalent charge
induced by the super spin current. This is different from the
second GL equation of the charge superconductor, which
describes the super current itself11.

The relation between the GL-type and London-type equations.
By substituting cðrÞ ¼

ffiffiffiffiffiffiffiffiffiffi
nsðrÞ

p
eiyðrÞ into equation (5), we get

js ¼
nsðrÞ
m� �hryþ a0ðs�rjÞ½ � ð6Þ

Here, nsðrÞ ¼j cðrÞ j2 is the spin superfluid carrier density.
Equation (6) can be seen as the generalized London-type
equation. This is manifested as follows. If ns is independent
of r, and take the curl of equation (6), we can get r� js¼
� a0ns

m� [(r �E)s� (s � r)E)]. In addition, the derivation of the
second London-type equation in ref. 3 does not consider the
effect of electric charge in the system. Thus, we can taker �E¼ 0,
then we obtain r� js¼ a0ns

m� (s � r)E. It is the same as the second
London-type equation deduced in ref. 3.

The characteristic lengths of the spin superconductor. As we
know, the charge superconductor has three characteristic para-
meters: the GL coherence length x, the penetration depth of the
magnetic field l and the GL parameter k. In the following, we will
analyse the characteristic parameters of the spin superconductor
from the GL-type equations. First, if we set E¼ 0, we can find that
the GL-type equations of the spin superconductor are the same
as the charge superconductor20 when A¼ 0. Therefore, the
definition of the GL-type coherence length is also the same,
that is x2(T)¼ � �h2

2m�aðTÞ. Second, in the charge superconductor,
the super current is jepA. It means that the first derivative of je is
proportional to the magnetic field B. Considering the Maxwell
equation r�B¼m0je, we get r2BpB. From this equation, we
can see that the magnetic field B decays exponentially from the
surface to the interior. For the spin superconductor, however, the
super spin current is jspE; it is proportional to the electric field.
As a result, the penetration depth l is impossible to define, so is
the GL-type parameter k.

The super spin current induced by a uniform electric field. As
an application of the GL-type equations, we use them to calculate
the super spin current when a spin superconductor confronts a
uniform electric field. When the field is sufficiently high, the spin
superconductivity is destroyed. If we continuously decrease the
field, at a certain field E¼Ec, spin superconductivity begins to
appear. The Ec is called the critical electric field. In the region
where the field is very close to the critical field Ec, the spin
superconductivity is just beginning to appear; therefore, j c j is
very small. As a result, we can linearize the first GL-type equa-
tion20–22 as:

1
2m� ð� i�hr� a0s�EÞ2c ¼ � ac ð7Þ

Suppose the surface of the spin superconductor lies in the xy
plane and the uniform electric field is parallel to the surface,
pointing to the y axis direction. The electric field can be written as
E¼ E0ey, and we have s�E ¼ �h

2 ez�E0ey ¼ � �hE0
2 ex. Here we have

assumed that the direction of the spin s is fixed at z direction by
the external field. By substituting s�E ¼ � �hE0

2 ex into

equation (7), we get

1
2m� ðp̂x þ

�ha0
2

E0Þ2 þ p̂2y þ p̂2z

� �
c ¼ � ac ð8Þ

The form of equation (8) is similar to the Schrödinger equation, and
the left part can be regarded as Ĥc. As p̂x, p̂y and p̂z are
commutative with Ĥ, the eigenfunction can be chosen as
eipx�x=�heipy �y=�heipz�z=�h. The magnitudes of px, py and pz are
determined by the boundary conditions and external conditions.
We can choose the proper condition that makes px¼ py¼ pz¼ 0,
that is, we consider the case that the super spin current is zero when
E¼ 0. Under this case, we use c0 to represent the wave function,
which is uniform in the space. According to equation (5), we obtain
js ¼ � a0

m� j c j2 ðs�EÞ ¼ �ha0
2m� c2

0E0ex. It should be noted that the
super spin current js is non-zero in the existence of the electric field

E. The equivalent dipole moment is Pe / js�a0s ¼ � �ha20
2m� c2

0E0ey;
thus, the equivalent charge is Q¼ �r �Pe¼ 0. Q¼ 0 illustrates
that the spin superconductor does not screen the electric field. This
result is corresponding to the electric Meissner effect of the spin
superconductor3, which says what the super spin current screens is
the gradient of the electric field rather than the electric field itself.

We can compare it with the case in the charge super-
conductor20. Suppose there is a uniform magnetic field parallel to
the surface of the superconductor. The momentum p should be
replaced by p� e

cA. The magnetic field B is the first-order
differential of A; therefore, if B is uniform, A is a linear function
of r. By substituting it into the first GL-type equation of the
charge superconductor, we get a potential energy that is a
quadratic function of r. This equation is similar to the
Schrödinger equation of the harmonic oscillator; thus, the
solution is a local wave function. As a result, the super current
is distributing near the surface. This super current can screen the
magnetic field, producing the Meissner effect in the charge
superconductor. In the spin superconductor, however, the
momentum is changed to p� a0s�E. When the electric field is
uniform, and by substituting it into the first GL-type equation, we
get a constant potential. This potential cannot cause any non-
trivial modification and the super spin current cannot be localized
near the surface. In fact, the fundamental cause of this difference
is that the electric charge is monopole but magnetic moment is
dipole. It is the major asymmetry between electricity and
magnetism. This cause the different Meissner effects for the
charge superconductor and the spin superconductor.

The super spin current induced by a thin charged wire. Next,
we calculate the super spin current when a quasi 2D spin
superconductor confronts a field induced by a thin charged wire.
As shown in Fig. 1a, a thin charged wire is on the top of a quasi
2D spin superconductor. The spin superconductor is a thin film
and its thickness of the z direction is less than the GL-type
coherent length x. Thus, the wave function is uniform in the z
direction, which can be ignored. Furthermore, the thin film is
infinite in the y direction, whereas the length in the x direction is
finite. Suppose the charge density of the wire is r0, then
the magnitude of the induced electric field is E ¼ r0

2pE0r
. As shown

in Fig. 1, the electric field can be written as
E ¼ r0

2pE0
ð x
z2 þ x2 ex þ z

z2 þ x2 ezÞ. By substituting it into equation (7),
and considering equations (4) and (5), we obtain the super spin
current js ¼ � �ha0

2m�
r0
2pE0

x
z2 þ x2 ey, the equivalent dipole moment

Pepjs� a0sB� x
z2 þ x2 ex and the equivalent charge Q � z2 � x2

ðz2 þ x2Þ2.

The variation of the electric field induced by the super spin current

along z direction, @Einduced
z
@z , is proportional to the equivalent charge

Q � z2 � x2

ðz2 þ x2Þ2. Note that @Ez
@z � x2 � z2

ðz2 þ x2Þ2, thus, the electric field
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induced by the super spin current cancels out @Ez@z . As a result, we can
say that the super spin current screens the variation of the electric
field. This conclusion, which is according to the electric Meissner
effect of the spin superconductor, is also clearly clarified in Fig. 1b. It
should be noted that the altitudes of the js, Q and @Ez

@z in Fig. 1b are
meaningless, because we have ignored the coefficients. What Fig. 1b
reflects is the tendency that the super spin current screens the var-
iation of the electric field. We can also see that the flow direction of
the super spin current in x40 is opposite to that in xo0. In x¼ 0,
js¼ 0.

Spin-current Josephson effect of the spin superconductor. We
know that the Josephson effect is another highlight of the charge
superconductor23. In the following, we use the GL-type equations
to discuss the spin-current Josephson effect of the spin
superconductor. The schematic diagram for the device is shown
in Fig. 2. We suppose that the magnetic fields, used to polarize the
spins of electrons, are the same on both sides of the junction.
When E¼ 0, the GL-type equations of the spin superconductor
are the same as the charge superconductor when A¼ 0.
Therefore, a spin superconductor has the same DC spin-current
Josephson effect as a charge superconductor23. The super spin
current is j¼ j0 sin g0, where g0¼ g1� g2. j0 is the Josephson
critical super spin current, and g1 and g2 are phases of the spin
superconductors on both sides of the Josephson junction. Next,
consider the AC spin-current Josephson effect. As shown in
Fig. 2a, the magnetic fields on both sides are different, B1¼B1ez,
B2¼B2ez, B1aB2. The super spin current flows from side 1 to
side 2, and the change of phase is g ¼ g0 þ a0

�h

R 2
1ðs�EÞ � exdx.

Thus, we have @g
@t ¼

a0
�h

R 2
1ðs� @E

@tÞ � exdx. By substituting @E
@t ¼

1
m0E0

ðr�BÞ into the above equation, we get @g
@t ¼

a0
2m0E0

ðB2 �B1Þ
and g ¼ g0 þ a0

2m0E0
ðB2 �B1Þt. Therefore, the super spin current is

j¼ j0 sin(g0þo0t), where o0 ¼ a0
2m0E0

ðB2 �B1Þ ¼ e
4m� ðB2 �B1Þ. It

can be seen that the super spin current is an alternating current. If
the difference between the magnetic fields on both sides B2�B1 is
0.01T, we can estimate the frequency o0, and its order of
magnitude is 1GHz. On the basis of this AC spin-current
Josephson effect, we can very sensitively detect the spatial
variance of the magnetic field by measuring the the frequency of
the spin current. A difference of the magnetic fields, 2� 10� 7

Gauss, can induce the spin current with its frequency around
1Hz, which can be easily measured using the present technology.
Next, we consider the effect of an external electric field shown in
Fig. 2b. The uniform electric field is along the lateral direction of
the Josephson junction and is written as E¼E0ey. The phase is
g ¼ g0 þ a0

2

R
ðez�E0eyÞ � exdx ¼ g0 þ a0

2 E0d, where d is the width

of the junction. Thus, the spin current is j ¼ j0 sinða02 E0dþ g0Þ.
It is changed by the sine rule according to the electric field.

Discussion
In conclusion, we have derived the GL-type equations of the spin
superconductor. We show that the second GL-type equation is
the generalized London-type equation. In addition, we analyse
some characteristic parameters of the spin superconductor by
using the GL-type equations. Moreover, as the applications of the
GL-type equations, we use them to calculate the super spin
current in a spin superconductor under a uniform electric field
and the super spin current where a thin charged wire is brought
into the vicinity of a quasi 2D spin superconductor. Our result
verifies the electric Meissner effect of the spin superconductor.
We also discuss the spin-current Josephson effect of the spin
superconductor from the GL-type equations, including the DC
spin-current Josephson effect, the AC spin-current Josephson
effect and the effect of an external electric field. To see the
differences between the charge superconductor and the spin
superconductor clearly, we summarize them in Table 1.

Methods
The derivation of the GL-type equations. At first, we minimize the free energy
shown in equation (1) with respect to the complex conjugate of the wave function
c� . For the second term of equation (1), we have

d
Z

d3ra j c j2¼
Z

d3racdc� ð9Þ

For the third term of equation (1), we have

d
Z

d3r
b
2
j c j4¼

Z
d3rbc2c�dc� ð10Þ

For the fourth term, we get

d
Z

d3r
1

2m� j ð � i�hrþ a0s�rjÞcðrÞ j2

¼
Z

d3r
i�h
2m� rdc� � � i�hrþ a0ðs�rjÞ½ �cf g

þ 1
2m�

Z
d3ra0ðs�rjÞ � � i�hrþ a0ðs�rjÞ½ �cf gdc�

ð11Þ

Note that

i�h
2m�

Z
d3rrdc� � � i�hrþ a0ðs�rjÞ½ �cf g

¼ i�h
2m�

I
dS � dc� � i�hrþ a0ðs�rjÞ½ �cf g

� i�h
2m�

Z
d3rdc�r � � i�hrþ a0ðs�rjÞ½ �cf g

ð12Þ

and considering equations (9), (10), (11) and (12) together, we can obtain

acþ b j c j2 cþ 1
2m� � i�hrþ a0ðs�rjÞ½ �2c ¼ 0 ð13Þ

B1 B2

E

Z
y

x

Figure 2 | The spin-current Josephson junction. (a) The schematic

diagram for the device of Josephson junction (spin superconductor-

insulator-spin superconductor junction). The magnetic fields imposed on

both sides are unequal B1aB2. (b) The schematic diagram for the device

showing the effect of electric field on the spin-current Josephson effect.
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Figure 1 | The quasi 2D spin superconductor under a thin charged wire.

(a) The schematic diagram for the device consisting of a thin charged wire

and a thin film of spin superconductor. The red arrows describe the flow

direction of the super spin current. (b) The variation @zEz of the electric

field, the induced super spin current j and the equivalent charge versus x.
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and

� i�hrþ a0ðs�rjÞ½ �ncðrÞ ¼ 0 ð14Þ
Equation (13) is the first GL-type equation of the spin superconductor.

Equation (14) is the boundary condition for the first GL-type equation, where the
subscript n denotes the component perpendicular to the surface. On one hand, the
boundary equation (14) can be viewed as the demand of the variational principle.
The similar demand was adopted in the original paper written by Ginzburg and
Landau11. On the other hand, the physical reason for choosing this boundary
condition will be discussed shortly. If the wave function c satisfies equation (13), it
is easily shown that the super spin current is source free24,25, that is, r � js¼ 0. In
addition, if the wave function c satisfy the equation (14) together, the spin
superconductor sustains no net force.

Next, we minimize the free energy with respect to the electric potential j. For
the fourth term of equation (1), we have

d
Z

d3r
1

2m� j ð � i�hrþ a0s�rjÞcðrÞ j2

¼
Z

d3r
1

2m� þ i�ha0ðs�rdjÞc � rc�½

þ a20ðs�rdjÞ � ðs�rjÞcc��þ c:c:

¼
Z

d3r
i�ha0
2m� r � ðc�rc�crEc�Þ�s½ �dj

�
Z

d3r
a20
m� r � ðs�rjÞðcc�Þ�s½ �dj

ð15Þ

For the fifth term of equation (1), we get

d
Z

d3r
1
2
E0ðrjÞ2 ¼ � E0

Z
d3rr2jdj ð16Þ

Note that the total electric filed contains the external field and the field induced by
the super spin current. The external field is fixed; thus, its result of variation is zero.
We only need to minimize the free energy with respect to the field induced by the
super spin current. Considerequations (15) and (16) together, we can obtain
equation (17):

r ¼ r � i�ha0
2m� ðc

�rc�crc�Þ� a20
m� j c j2 ðs�rjÞ

� �
�s

� �
ð17Þ

where r¼ � E0r2j. Equation (17) is the second GL-type equation of the spin
superconductor.

Solution of the super spin current under a thin charged wire. By substituting
the electric field E ¼ r0

2pE0
ð x
z2 þ x2 ex þ z

z2 þ x2 ezÞ into equation (7), we get

1
2m� � �h2ð @

2

@x2
cþ @2

@y2
cÞþ i�h2a0

r0
2pE0

x
z2 þ x2

@

@y
cþ a20�h

2

4
r20

4p2E20

x2

ðz2 þ x2Þ2
c

� �
¼ � ac

ð18Þ

The left part of equation (18) can be regarded as Ĥc and p̂y is commutative
with Ĥ. Therefore, the eigenfunction can be chosen as c ¼ eipy �y=�hfðxÞ. By sub-
stituting it into equation (18) and taking py¼ 0 (the value of py is zero when we

choose the external condition of the total super spin current being zero), we get

� �h2

2m�
@2

@x2
fðxÞþ a20�h

2

8m�
r20

4p2E20

x2

ðz2 þ x2Þ2
fðxÞ ¼ � afðxÞ ð19Þ

By multiplying equation (19) by f* and subtracting the product between the
complex conjugate of equation (19) and f, we have @

@x ðf
� @
@xf�f @

@xf
�Þ ¼ 0. By

considering the boundary condition � i�hr� a0ðs�EÞ½ �ncðrÞ ¼ 0, we get
f� @

@xf�f @
@xf

�	 

j boundary¼ 0. Therefore, f� @

@xf�f @
@xf

� ¼ 0 at any point. It

is easy to get, from the second GL-type equation, jx¼ 0 and jy ¼ � �ha0
2m�

r0
2pE0

x
z2 þ x2.

Therefore, we have js ¼ � �ha0
2m�

r0
2pE0

x
z2 þ x2 ey , the equivalent dipole moment

Pe / js�a0s � � x
z2 þ x2 ex, and the equivalent charge Q ¼ �r � Pe � z2 � x2

ðz2 þ x2Þ2 .
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