Figure 1: Locust genomic characterization and comparative analysis of insect genomes.
From: The locust genome provides insight into swarm formation and long-distance flight

(a) A schematic representation of genomic characteristics of the locust pseudo-chromosomes (in an Mb scale). Track a: 11 linkage groups of the locust genome, grey denotes unmapped scaffolds. Track b: coverage of sequencing depth (blue) and distribution of allelic heterozygous single-nucleotide polymorphisms (SNPs) between the two haploids (orange). Track c: density distribution of three dominant subclasses of repetitive element (DNA transposons, red; LINEs, green; long terminal repeats (LTRs), blue). Track d: divergence rates of three dominant subclasses of repetitive element (DNA transposons, red; LINEs, green; LTRs, blue). Track e: ratio of observed to expected frequency of CpG dinucleotides in the coding region of gene sets (orange) and in the whole genomic region (violet). (b) Phylogenetic relationships inferred based on the concatenated data set from universal single-copy genes. The number in the branches indicates the genome sizes. (c) Size expansion of genomic components of a homologous and syntenic locus between the locust and fly genome inferred from the Osiris genes, a conserved gene family across insects. (d) Deletion rates across five insect genomes that contain a substantial fraction of LTR retrotransposon copies. Because of their relaxed selection pressures and reputed neutral decay rates, LTR retrotransposon copies were used to estimate deletion rates. RepeatMasker searches were performed to determine the deletion rates of genomic retrotransposon copies using intact LTR retrotransposons as a query. The genomic visualization was created using the programme Circos. AGA, A. gambiae; AME, A. mellifera; API, A. pisum; BMO, B. mori; DME, D. melanogaster; DPU, D. pulex; LMI, L. migratoria; NVI, Nasonia vitripennis; PHU, P. humanus; TCA, Tribolium castaneum; .