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Self-organization into quantized eigenstates
of a classical wave-driven particle
Stéphane Perrard1, Matthieu Labousse2, Marc Miskin1,2,w, Emmanuel Fort2 & Yves Couder1

A growing number of dynamical situations involve the coupling of particles or singularities

with physical waves. In principle these situations are very far from the wave particle duality at

quantum scale where the wave is probabilistic by nature. Yet some dual characteristics were

observed in a system where a macroscopic droplet is guided by a pilot wave it generates.

Here we investigate the behaviour of these entities when confined in a two-dimensional

harmonic potential well. A discrete set of stable orbits is observed, in the shape of successive

generalized Cassinian-like curves (circles, ovals, lemniscates, trefoils and so on). Along these

specific trajectories, the droplet motion is characterized by a double quantization of the orbit

spatial extent and of the angular momentum. We show that these trajectories are intertwined

with the dynamical build-up of central wave-field modes. These dual self-organized modes

form a basis of eigenstates on which more complex motions are naturally decomposed.
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T
here is a large variety of physical systems in which localized
objects (particles, point-like sources or singularities) are
associated with extended waves. These entities have a

generic character being observed in, for example, localized
soliton-like dissipative structures, defects in extended nonlinear
patterns, polaritons, electromagnetic knots, chemical waves or in
the vortices of Bose–Einstein condensates1–9. Their self-
organization is of particular interest because of the specific
non-locality of their wave-mediated interactions. Our group has
introduced a simple experimental system having such an
interplay between a wave and a particle endowed with an
additional memory effect. The particle is a liquid drop, bouncing
on a vertically vibrating bath. It is propelled by its interaction
with the surface waves that it produces10,11. The resulting
dynamical entity is designated henceforth a walker. It is
interesting to note that the walker implements a pilot wave
system. This idea was first proposed theoretically by de
Broglie12,13 in the early stage of quantum physics, as an
attempt to predict the wave-like properties of elementary
particles. For de Broglie, the localized object (particle or
singularity) moved, guided by a spatially extended pilot wave.
In de Broglie’s model, the pilot wave was a real wave; later
Bohm14 suggested that it could rather be the solution of the
Schrödinger equation. These models, intrinsically different from
each other15,16, remain two important hypotheses for a possible
interpretation of quantum effects.

The walker pilot wave has two assets; it is a real wave and it is
associated with a memory. As the droplet bounces on a vibrated
bath, each impact generates a packet of parametrically forced
Faraday waves that is sustained for a finite time11. The total wave
field that guides the droplet is a linear superposition of these
waves. Its interference pattern contains a memory of the past
trajectory. Previous experiments on walkers have revealed that
when the dynamics is dominated by memory effects, some
quantum-like properties arise. They include independently a form
of uncertainty principle17,18 and a form of discretization19,20. The
latter was obtained in an experiment in which a walker moving
on a rotating bath is submitted to a Coriolis force. At long
memory the motion is affected by the associated waves: the orbit
remains circular but its radius can only take discrete values. In
this situation, owing to the translational invariance, only one
integer is needed to completely define the observed states.
Assuming in this experiment that the Faraday wavelength played
the role of the de Broglie wavelength in quantum mechanics, this
discretization was shown to have a similarity with angular
momentum quantization18.

These results are surprising regarding the huge differences
between walkers and quantum particles. Walkers have a classical
scale so that they have no relation to the Planck constant. They
are not Hamiltonian: they are dissipative structures sustained by
an external forcing. Furthermore, their associated waves are not
probability waves but physical waves propagating on a material
substrate. Precisely because of this distance, the previous results
obtained with walkers suggest that some phenomena could be
general enough to overcome the classical quantum barrier and be
common to the two worlds. If this can be proven true,
experiments performed at classical scale could shed light on
non-resolved quantum phenomena. Furthermore, in this case
contrary to Landau quantization, there are two degrees of
freedom that cannot be reduced. Correspondingly, we find that
two integers are needed to fully characterize a single state. This
double quantization opens the possibility of degeneracy, which is
observed experimentally. Here we thus demonstrate the existence
of a classical analogue of quantum eigenstates that was still
missing. The results obtained hitherto suggested that the most
important asset of a walker is its interaction with its own past

whenever it visits a region it has already disturbed. This type
of spatio-temporal non-locality opens the possibility of self-
organization for a single object. The present article investigates
this phenomenon: we show that in confined situations quantum-
like eigenstates emerge from memory-mediated self-organization.

Results
Confinement of the droplet with a magnetic force. To achieve
this confinement, we choose a case where the particle is trapped
in an axisymmetric potential well. We obtain this situation by
applying an attractive central force on a magnetized droplet. The
characteristics of the walkers impose a specific approach for the
investigation of their dynamics in a potential well. In the quan-
tum situation, a particle trapped in a harmonic potential well can
be in successive eigenstates of increasing energy and decreasing
mean wavelength as sketched in the one-dimensional case in
Fig. 1a. For a walker it is not possible to vary the kinetic energy of
the particle: the droplet velocity is approximately constant and its
wave field is characterized by a fixed wavelength lF. However, it
can be noted that in the quantum situation, the successive
eigenstates could be obtained at a fixed energy and mean wave-
length by tuning the width of the well (see Fig. 1b). Here we will
use this idea to seek the possible emergence of eigenstates when
the spatial confinement is varied.

The basic experimental set-up is similar to that used in
previous works11,16–19. A tank is filled with a silicon oil. It
oscillates vertically at a frequency f0 with an acceleration
g¼ gmsin(2pf0t). The amplitude gm can be continuously tuned
from a value of the order of the acceleration of gravity g up to the
Faraday instability threshold gFm. The ‘walking’ regime appears
at a threshold gWm (located below gFm) when the drop becomes a
source of damped Faraday waves with periodicity TF and
wavelength lF. Above gWm , the drop velocity increases rapidly
and saturates; the velocity modulus V of a given droplet is
approximately constant along its path (with 20% maximum
variation), being imposed by the self-propulsion. An essential
feature of the walker is the structure of its wave field. As
demonstrated in ref. 11, Faraday waves centred at the impact
point are created at each bounce. These waves damp out with a
characteristic memory time t related to the distance to the
Faraday instability threshold. The parameter M¼ t/TF¼ gm/
(gFm � gm) indicates the number of past sources contributing to
the global wave field. It is thus a measure of what we call the
wave-mediated path memory of the particle.

In the present experiment, we want to submit the drop to a
controlled force. For this purpose, the drop is loaded with a small
amount of ferrofluid and becomes sensitive to any magnetic field.
The encapsulation is obtained by dipping a conical needle into
some ferrofluid immersed at the periphery of the bath. When the
needle is swiftly pulled out, a liquid bridge containing a thread of
ferrofluid is formed. It then breaks into a drop of oil containing a
droplet of ferrofluid. The magnetic drop is completely covered by
the silicon oil and the slight change in mean density and viscosity
has no measurable effect on the dynamics of the bouncing. The
presence of the ferrofluid has a negligible effect on the bouncing
regimes and the drop velocity. The experimental cell is immersed
in two superposed magnetic fields (Fig. 1c,d). Two large coils in
Helmholtz configuration generate a vertical and spatially
homogeneous field B0 perpendicular to the bath surface. A
cylindrical magnet of diameter 15mm, placed on the cell axis
provides a second non-homogeneous magnetic field B1(d,r),
where r is the distance to the axis and d the tunable distance of
the liquid surface. The characterization of the generated magnetic
field is detailed in the Methods section. The ferrofluid drop,
polarized by the field, acquires a magnetic moment mB. Near the
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axis of the magnet, the resulting force can be approximated by a
spring force:

FmðdÞ¼� kðdÞr ð1Þ
The value of k depends on the volume nferro of the encapsulated

ferrofluid and its susceptibility. The force can be considered as
harmonic up to a radius of B3 lF. For a given drop, the spring
constant can be tuned by changing the distance d between
the magnet and the oil surface. The angular frequency that
characterizes the harmonic potential well is thus
o¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðdÞ=mW

p
, where mW is the effective mass of the walker.

Calibration is required as nferro and mW cannot be measured

directly. We have developed a technique that gives nferro/mW for
each drop (see Methods for details).

Influence of the memory on the walker’s dynamics. In short
memory situations (Mo10), whenever the drop is released at the
periphery of the cell, it converges into a circular orbit centred on
the magnet axis, maintaining a constant speed V. The variation of
the normalized radius R/lF of the orbits as a function of the
dimensionless width of the potential well L¼ (V

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mW=k

p
)/lF can

be deduced by a simple mechanical equilibrium where the cen-
tripetal acceleration equates the spring force (see Fig. 2a). It yields
R/lF¼ L. The parameter L plays the role of a control parameter
for drops of various sizes and velocities. In addition, once
established, this master curve can be used to obtain the
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Figure 1 | Principle of the experiment and actual set-up. (a) Sketch of the

successive eigenstates of increasing energy and decreasing wavelengths of

a quantum particle in a one-dimensional harmonic potential well. (b) These

successive eigenstates could be observed at a fixed energy and mean

wavelength if the width of the potential well is varied. This experiment relies

on the possibility to trap a walker in a harmonic potential well of tunable

width. Since the wave field associated to a walker has a fixed wavelength lF
it is possible to expect that there exists a discrete set of potential wells

characterized by their spring constants kn, for which discrete eigenmodes

appear. (c) Sketch of the experimental set-up. The Helmholtz coils generate

a spatially homogenous magnetic field B0. A magnet located at an

adjustable distance d from the bath surface generates a spatially

inhomogeneous magnetic field B1. (d) A central magnetic force is exerted

on the droplet filled with a ferromagnetic fluid, induced by the superposition

of a constant vertical magnetic field B0 and B1 It has, to a good

approximation, a harmonic profile.
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Figure 2 | Discretization of circular orbits with memory. (a) Plot of the

dimensionless radius R/lF as a function of the non-dimensional width of the

potential well L¼V/(olF) in the low-memory situation (M¼ 10):

experimental data (dots). The dependence follows the expected

proportionality of a classical particle R/lF¼L, with a slight shift of 10%.

Inset: a typical circular orbit, with axis in lF unit. (b) Diagram illustrating the

progressive discretization of the radii of the circular orbits as the

memory parameter M is increased. The experimental (circles) results were

obtained for a range of the control parameter. The dashed lines provide

guides for the eye.
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calibration
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mW=k

p
for any drop, regardless of its size, and its

ferrofluid content (see Methods).
The memory is tuned by changing the amplitude of the vertical

forcing. We first discuss the evolution of the low-memory
circular orbits when increasing memory. As M increases, the
observed stable solutions become confined to narrowing ranges
of radii forming tongues separated by forbidden zones (see
Fig. 2b, correspondingly the ranges of values of L in which
they are observed become narrower). The width of these tongues
decreases with increasing memory, leading to a discrete set of
orbits of radii Rn.

As the self-propelled drop becomes sensitive to its own past,
the trajectories become more diverse. At long memory, the most
generally observed trajectory, when no particular care is taken in
tuning the potential well, has a complex aspect with a looped
structure that will be discussed below. However, in the medium
memory range (30oMo100) simple trajectories such as those
shown in Fig. 3 (and Supplementary Movies 1–3) are obtained,
each existing in a narrow range of values of L. These orbits are
either stable (Fig. 3a,c,e,g) or precess azimuthally (Fig. 3b,d,f,h).
Note that only the smallest orbit, n¼ 1, remains circular at long
memory (Fig. 3a,b). The n¼ 2 orbit assumes a stadium shape
(Fig. 3c,d), while the next orbits are warped circles with symmetry
3, 4 and so on.

The shapes of all the observed trajectories have a common
feature: they can be fitted by generalized Cassini ovals21. These
curves, originally introduced by Cassini, are the loci of the points
where the product of the distances to two fixed foci is constant.
The two foci being at a distance 2a from each other, their polar
equation is:

r4 þ a4 � 2a2r2 1þ 2cos 2yð Þ½ �¼b4 ð2Þ
The ratio a/b determines the shape of the curve. The circle is

the trivial case where the two foci coincide. The stadium-shaped
orbits are Cassini ovals (in Fig. 3c). The figure of eight shown in
Fig. 3e is the Cassini curve with a/b¼ 1 that is, a Bernoulli
lemniscate of polar equation r2¼ 2a2cos (2y). As for the warped
circles and the trefoils, they can also be fitted by generalized
Cassinian curves with three foci or more. The Cassinian ovals
provide the best fits. However, other related families of curves
having the same topology, such as the Cayley ovals, could also
provide possible fits for the trajectories.

A double quantization. We characterize the particle’s motion by
two features, its mean non-dimensional distance to the central
axis �R:

�R¼
ffiffiffiffiffiffiffiffiffi
R2h i

p
lF

¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

r2k tð Þ
l2F

vuut : ð3Þ

and its mean non-dimensional angular momentum �Lz :

�Lz¼
Lzh i

mWlFV
¼ 1
N

XN
k¼1

rk
lF

�Vk

V

� �
: ð4Þ

where rk is the position of the kth bounce and N is the total
number of bounces.

Similarly, the other types of stable trajectories undergo the
same evolution with memory but there is a memory threshold for
their appearance. The lemniscates (Fig. 3e,f) show up for MZ20
in the range 0.4oLo0.7. In wider potential wells, in the range of
1.1oLo1.5, stable lemniscates of larger size are also visible, as
well as another type of orbit in the shape of a trefoil (Fig. 3g,h).
The range of L in which these solutions are observed becomes
narrower when M increases.

The remarkable feature of all these orbits is the double
quantization of their spatial extent and angular momentum.
Figure 4a plots the measured normalized radii �R for the various
trajectories as a function of the control parameter L for
intermediate memory (30oMo70). For orbits in the shape
of a circle (or of warped circles), the mean radii satisfy �Rn ¼
(n� e)lF/2, with n being the successive integers and
e¼ 0.26±0.2. The origin of this phenomenological relation is
related to the Bessel functions as shown below. Note that the
values of these radii are a function of the wavelength only: the
control parameter L simply selects amongst the possible Rn.
Similarly, the other types of trajectories also correspond to
discrete values of �R (Fig. 4a). For instance, the mean radii of the
eight-shaped paths are either �R¼ 0.9±0.1 or �R¼ 1.9±0.2, values
that are close to the radii Rn of the circular orbits n¼ 2 and n¼ 4,
respectively. Trefoils are also quantized with �R¼ 1.9±0.2
corresponding to n¼ 4 for the circular orbit.
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Figure 3 | Four of the experimentally observed long memory stable

orbits. Simple trajectories can be observed in narrow ranges of values of

the tuning parameter L. They are shown in their most stable form (for

ME50) and in situations where they are slightly unstable (for ME100).

The scales are in units of the Faraday wavelength lF¼4.75mm. (a,b) The

smallest circular orbit (n¼ 1, m¼±1). (c,d) The oval orbit (n¼ 2, m¼±2)

well fitted by a Cassini oval. (e,f) The small lemniscates (n¼ 2, m¼0).

(g,h) The trefoil (n¼4, m¼±2). In b,d,f,h the trajectories are shown in

grey for a long time interval and a part of it has been singled out in red.

The scales are in units of lF. See Supplementary Movies 1–3 associated with

trajectories of a,d,f, respectively.
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In addition, we measure �Lz for each type of orbit. The results
are presented in Fig. 4b. For the circular (or nearly circular)
orbits, the mean angular momentum �Lz of the drop is quantized
with �Lz ¼±(n� e)/2, the sign depending on the direction of
rotation. For lemniscates, the symmetry of the trajectories induces
�Lz ¼ 0. For trefoils with n¼ 4, we measure �Lz ¼±(0.9±0.1), half
the corresponding value for the nearly circular orbit with n¼ 4.
Note that the observed slow precession has only a minor effect on
the value of �Lz .

A two-dimensional graph can be obtained (Fig. 4c) by plotting
against each other the two main characteristics of all trajectories,
that is, their mean radius �R and mean angular momentum �Lz .
The various types of trajectories appear to be well defined in this
two-dimensional plot. For each level �Rn, only a discrete set of
possible angular momentum values �Lz is reachable by the system.
Furthermore, the same discrete values of �Lz are observed for
different �Rn. From these results, we can define a second
quantization number m to sort the angular momenta in a
discrete set, where m has the sign of �Lz . All the trajectories can be
positioned at nodes (n, m) of a lattice with the generic rules: n is

an integer, and m can only take the values mA{� n, � nþ 2
y,nþ 2, n} (see Fig. 4c). The orbits of the n¼ 4 level have large
perimeters. The very large values of M necessary for their perfect
quantization cannot be reached in our bath of finite size and
hence the observed scatter of the results (Fig. 4c). The type of
orbits corresponding to the n¼ 3, m¼ 1 mode is not observed as
a stable mode presumably because its L value overlaps with the
ones of other simple modes. However, a good candidate for this
mode shows up in the decomposition of complex modes (see
below). It takes the form of small loops of radius 0.37 lF
distributed at a distance 1.4 lF from the centre. All the results
given in Fig. 4 have been recovered in the simulations (see
Supplementary Fig. 1).

Memory driving global wave field modes. The model that per-
mitted successful numerical simulations of the path memory
effects in previous studies11,17,19 is the starting point for both the
numerical simulation and the understanding of these phenomena.
In this approach, the horizontal and vertical motions of the
droplet are decoupled. The vertical forcing of the bath determines
each bouncing cycle, decomposed into a free flight and an
interaction with the bath. During the free flight, the motion of the
droplet is submitted to the magnetic force. At impact, the droplet
generates a surface wave and has a dissipative sliding motion. The
motion is first damped by friction and then modified by a kick on
the slanted surface. The increase of the horizontal momentum is
assumed to be proportional to the local slope at the point of
impact17,19. This slope is determined by the global wave field,
which is the sum of the elementary contributions induced by the
previous collisions at times tj and positions rj, with j ordering the
impacts. Each collision induces a zero-order Bessel function J0 at
the Faraday wavelength, damped with a characteristic memory
time t and a characteristic spatial length d resulting from
viscosity. The global wave field at the position ri of the ith impact
time is

h ri; tið Þ¼
Xi� 1

j¼�1
e�

ti � tj
t e�

ri � rjj j
d J0 kF ri � rj

�� ��� �
; ð5Þ

where kF¼ 2p/lF is the Faraday wave number. Such a model,
which captures all of the required dynamical features of the
walker behaviour, is supported by the more recent and complete
hydrodynamic analysis of the bouncing22,23.

The numerical simulation of this model provides results in
excellent agreement with the experiments (see Supplementary
Fig. 1). However, this approach does not provide a direct insight
on the selection of the observed eigenstates. We will now show
that they result from a mean field effect. The droplet having a
motion confined in a circular region of radius L can excite the
global wave eigenmodes of this domain. This will have a feedback
effect on the droplet motion. The trajectories that eventually
emerge are those for which the trajectory shape and the global
wave field have achieved a mutual adaptation.

We will examine the quantization of the mean radii of the
various types of trajectories in this framework. Here we use a
general approach that consists in decomposing the entire wave
field on the basis formed by the Bessel functions centred on the
axis of the potential well. For the sake of simplicity, we consider
the case of no spatial damping. In this case, the wave field reduces
to a sum of temporally damped Bessel functions J0 emitted along
the past trajectory. Using Graf’s addition theorem24, the global
wave field h (r, ti) at position r¼ (r, y) and time ti (equation (5))
can be decomposed on the base formed by the Bessel functions
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(see Supplementary Fig. 1).
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centred on the axis of the potential well:

h r; tið Þ¼A0 J0 kFrð Þþ
Xþ1

n¼1

Jn kFrð Þ Ancos nyð ÞþBnsin nyð Þ½ �

ð6Þ
with the An coefficients depending on the particular trajectory at
the time ti.

We first focus on the coefficient A0. In the case of the smallest
circular orbit, A0 is proportional to J0: A0¼ J0(kFR)/(eTF=t � 1)
(see Fig. 5a). When R coincides with the first zero of J0, no mean
wave is generated and the droplet is submitted to the central force
only. For small deviations, the mode is excited, creating a radial
wave profile hR(r) and thus an effective potential Ep(R)pJ20 (kFR)
(see Fig. 5b,c). The additional force due to the wave field is
centrifugal if the radius is too small and centripetal in the
opposite case (see Fig. 5d). This gives an interpretation to the
experimental results. The radius R1 coincides with the first zero of
J0. The same reasoning can be applied for the other nearly circular
orbits (2, 2), (3, 3) and so on. Their mean radii coincide with the
successive zeros of J0 for which the phenomenological relation
involving the parameter e¼ 0.26 is a good approximation.

We can also analyse the wave field associated with all the stable
trajectories. For this purpose, we use the experimentally recorded
trajectories and reconstruct the associated wave field from the
modal analysis in equation (6). We find that each type of
trajectory is associated to a restricted set of global modes that
depends on the symmetry of the trajectory. For instance, in the
case of lemniscates, the twofold symmetry favours the even-order
Bessel modes, while for trefoils the threefold symmetry
dominates. Figure 5e and g shows two experimentally observed
trajectories, a circular orbit and a lemniscates, respectively. These
trajectories are superimposed on their reconstructed wave field.
The spectral decompositions of these fields on centred Bessel
modes are shown in Fig. 5f,h. Only a small number of modes is
needed. In agreement with the symmetries, J4 is the dominant
mode for lemniscates and J6 is dominant for trefoils. Only a small
number of modes is needed for each type of orbiting motion.
These modes pilot the droplet dynamics. It can be noticed that
the interplay of the particle and the wave is responsible for the
non-conservation of the instantaneous momentum. This effect is
a direct consequence of the non-central nature of the force
exerted by the waves. The fact that the averaged momentum is
conserved means that a periodic exchange exists between the
particle and the wave.

Discussion
In the previous experiments involving a Coriolis effect19, the
waves only produced an additional radial force and thus a
discretization of the classical circular orbits. These orbits were the
result of a simple radial force balance on the droplet. Here the
eigenstates emerge from a dynamical self-organization process
resulting from the interplay between the wavefield and the droplet
motion. They are dually defined by a dominant global wavefield
mode and a specific type of trajectory. In addition, the
quantization concerns mean characteristics of the mode and
survive the jitter (Fig. 3). In addition, a similarity with quantum
mechanics can again be noticed: the selection rules relating m and
n are the same that link the energy and the angular momentum of
a quantum particle confined in a two-dimensional potential
well25.

Finally, we can examine the walker behaviour when L is not
tuned at any of the values corresponding to a pure eigenstate. In
all these regions, the trajectories have a very complex shape as
shown in Fig. 6a (see Supplementary Movie 4). This trajectory is
obtained for a value L set between those of pure n¼ 2
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Figure 5 | Mode analysis of the wave field. (a–d) Discretization of the

radius of the smallest circular orbit (1,1). The radial force is dominated by the

centred zero-order Bessel J0 function. The generated global wave field is

h0(r)¼A0(R)J0(kFr). (a) The amplitude A0(R) depends on the radius R

of the trajectory: A0(R)pJ0(kFr). In b are shown three surface profiles hR(r)

created by drops orbiting at three radii: R1 that correspond to the first zero of

J0(kFr) and RA and RB that are slightly smaller and slightly larger, respectively

(see a). Note that the circular orbit of radius R1 does not excite the J0
mode of the global wave field. (c) Whenever R does not coincide with a zero

of the J0 mode, a mean wave field is generated so that the drop has an

additional potential energy Ep(R)pJ20(kFR). (d) If the radius is slightly

smaller or larger than one of the radii Rn, the J0 mode is excited and exerts an

additional ‘quantization’ force onto the droplet :� (qEp/qR)pJ1(kFR)J0(kFR).

(e) The experimental trajectory of an experimental circular orbit (n¼ 1,

m¼ 1) at a memory parameter M¼ 32. Scales are in lF units. (f) Spectral
decomposition of the wave field in centred Bessel functions. The trajectory

being close to the ideal, the amplitude of the J0 mode is weak, the dominant

J1 mode is responsible for the azimuthal propulsion of the droplet. (g) An

experimentally observed lemniscate trajectory (n¼ 2, m¼0). The latest M

impacts are shown as open dots. It is superimposed on the reconstructed

global wave field. (h) The spectral decomposition of this wave field

showing that for this near-ideal orbit the J2 mode is specifically weak.
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lemniscates and ovals. Direct observation reveals that regular
motions still exist but only during limited time intervals. This can
be analysed by using the temporal evolution of the angular
momentum Lz as shown in Fig. 6b for 250 s of trajectory 5a. The
signal is not erratic, but composed of domains with �Lz ¼±1 and
others with a rapid oscillation of Lz around zero. Extracted from
the recorded data, the corresponding trajectory fragments
(singled out in Fig. 6a) are ovals (n¼ 2, m¼±2) and lemniscates
(n¼ 2, m¼ 0), respectively. The detuned trajectory is thus formed
of a succession of sequences of pure eigenstates with intermittent
transitions between them. Along the trajectory we measure both
the mean spatial extension �R and angular momentum �Lz averaged
over the typical orbiting time. As expected in the case shown in
Fig. 6a, �R � �R2. We also build, from the analysis of long
recordings, the probability distribution function of the mean

angular momentum p �Lzð Þ. It exhibits well-defined maxima
corresponding to the �Lz values of the lemniscate and n¼ 2 oval
modes. It evidences the decomposition in pure eigenstates
resulting from the intermittency phenomenon. The same type
of effect is observed for all tunings of L with the possibility of
having several modes involved in the decomposition. In this
general case, the quantized self-organized eigenstates survive,
forming the basis of a spontaneous probabilistic decomposition.

Methods
Experimental set-up. The basic experimental set-up is similar to that used in
previous works11,17–20. A tank is filled with a silicon oil of viscosity m¼ 20 cP and
surface tension s¼ 0.0209Nm� 1. It oscillates vertically at a frequency f0¼ 80Hz
with an acceleration g¼ gmsin (2pf0t). The amplitude gm can be continuously tuned
from a value of the order of the acceleration of gravity g up to the Faraday
instability threshold observed at gFm ¼ 3.8 g. The Faraday wave has a periodicity
TF¼ 2/f0¼ 0.025 s and a wavelength lF¼ 4.75mm. The ‘walking’ regime appears at
a threshold gWm (located below gFm) when the drop becomes a source of damped
Faraday waves11. Above gWm , the drop velocity increases rapidly and saturates; the
velocity modulus V of a given droplet is approximately constant along its path
(with 20% maximum variation), being imposed by the self-propulsion. Here we
limit ourselves to droplets of velocity ranging from 7 to 13mm s� 1.

Loading a droplet with ferrofluid. The central potential exerted on the droplet
results from a magnetic force. A small quantity of ferrofluid is encapsulated in the
droplet to exert a controlled magnetic force.

The ferrofluid is composed of a suspension of nanoparticles of an iron–cobalt
alloy in a glycerol solution. The particles volume fraction is 0.22 and the density
r¼ 2.06. To obtain the encapsulation we proceed in the following way. A large
drop of ferrofluid is deposited at the periphery of the experimental bath. Because of
its larger density, it sinks and rests on the bottom of the cell. A conical needle is
then dipped into the bath, its tip plunging in the ferrofluid. When the needle is
swiftly pulled out, a liquid bridge forms, containing a thread of ferrofluid. It then
breaks into a drop of oil containing a droplet of ferrofluid.

Magnetic field characterization. The trap is created by two independent mag-
netic fields. A homogeneous B0 (with B0E50G) is created by two coils in the
Helmholtz configuration. We have checked that a magnetically loaded walker
moves rectilinearly in this field. An axisymmetric potential well is obtained when a
small cylindrical magnet is placed above the fluid surface along the axis of the cell
at a distance d (30rdr80mm). This magnet generates a second magnetic field
B1(d, r), of typically 20G at a distance d¼ 50mm with a gradient of 0.1 Gmm� 1 at
r¼ 10mm from the centre. The ferrofluid drop polarized by the whole field B¼
B0þB1, acquires a magnetic moment mB¼ vferrow0/(1þ w0)B/m0 where nferro is the
encapsulated volume of ferrofluid, w0 is the susceptibility and m0 is the magnetic
permeability. The magnetic field is maximal on the symmetry axis and the drop is
thus trapped by an attractive force:

Fm¼� mB: rð ÞB¼nferro
w0

w0 þ 1

� �
1
m0

B:rð ÞB ð7Þ

where the typical value of (B.r)B required for confining a walker is 5G2mm� 1

for d¼ 50mm with B0¼ 50G.
To check the potential profile, the two components of the magnetic field have

been measured as a function of both d and r. The measured fields have been fitted
by the analytic expression of the field generated by a cylindrical magnetic source
(see Supplementary Fig. 2). The potential well can be considered as harmonic in a
central region of radius 15mm for this small magnet, which correspond to three
times the Faraday wavelength (lF¼ 4.75mm). This approximation holds for larger
distances with larger magnets. In the harmonic approximation, the spring constant
k is given by:

kðdÞ¼� vferro
w0

2ð1þ w0Þm0
d2

dr2
B0 þB1ðd; rÞð Þ2

� 	
r¼0

¼vferro
w0

ð1þ w0Þm0
a ð8Þ

where a is the curvature at the vertex of the parabola of –B2. Thus, the magnetic
trap depends on the magnetic properties of the droplet vferrow0/(m0(1þ w0)) and the
magnetic field profile through a. The latter can be determined and tuned by
changing the distance d of the magnet to the bath (see Supplementary Fig. 2).

Direct measurement of the magnetic force. Although nferro and mW are difficult
to determine experimentally, the angular frequency o¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðdÞ=mW

p
can be

characterized accurately using a calibration technique. The magnetically loaded
drop is submitted to a vertical excitation gm below the walking threshold so that it
is simply bouncing. In this regime the drop drifts towards the centre of the
potential well. The magnet located at a fixed distance d from the bath is set in a
horizontal oscillation at a low frequency fM with an amplitude rM. As a result, the
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Figure 6 | Eigenstates decomposition of a complex trajectory. (a) The

complex aspect of the type of trajectory most generally observed at long

memory recorded during 800 s (see Supplementary Movie 4). (b) A part of

the corresponding time recording of the angular momentum Lz showing the

intermittent transitions between two types of orbiting motion. The time

intervals in yellow and pink correspond to the oval and lemniscate-shaped

trajectory segments singled out in a. (c) The probability distribution

of the average of the mean angular momentum �Lz(Dt) measured when a

slot of length Dt¼4p�R2/V is slid along the trajectory. The maxima

correspond to the ovals (n¼ 2, m¼±2) and lemniscate (n¼ 2, m¼0)

modes. As in the case of circular orbits, the mean radius of the oval is equal

to the second zero of the J0 Bessel function and their associated non-

dimensional angular momentum can be approximated by �Lz ¼±(1� e/2)
with e¼0.26.
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droplet oscillates at the same frequency fM with an amplitude rd and a phase shift j
(see Supplementary Fig. 3).

The frequency response is fitted with a linear response of a forced harmonic
oscillator submitted to viscous damping (solid lines). Thus, the natural frequency
o/2p of the droplet in such a potential is equal to the resonant frequency measured
when the motion of the droplet and the magnet have a quadrature phase
relationship. Since the mass of the droplet and the acting force do not depend on
the acceleration of the bath, this result remains valid in the walking regime.

In addition, this method can be used to measure o as a function of the distance
d and to confirm the relation between o and the characteristics of the potential well
a obtained from magnetic field cartography (see Supplementary Fig. 2). o has a
square-root dependency with a (see Supplementary Fig. 4).

Calibration of the magnetic interaction. This calibration was a preliminary
before performing experiments with a walker. Using a drop previously calibrated,
the bath acceleration is set to the typical value of the low-memory regime (M¼ 10).
The drop starts to move and the motion converges quickly to a circular motion
centred on the magnet axis, maintaining a constant speed V. The final trajectory is
finally independent of the initial condition. The specific selection of these circular
trajectories is directly related to the constraint that the wave-driven droplet moves
with a constant velocity. Among all of the possible solutions of the classical
oscillator, only circular paths satisfy this condition. For a walker in this regime, the
radius R is obtained by writing that the magnetic force provides the centripetal
force:

R
lF

¼ V
lF

ffiffiffiffiffiffiffiffiffi
mW

kðdÞ

r
¼L ð9Þ

Since mw/k(d) has been obtained in the calibration process and V is measured
directly, there is no adjustable parameter. Figure 2a shows the normalized radius
R/lF of the orbits as a function of the dimensionless width of the potential well
L¼ (V

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mW=k

p
)/lF, which plays the role of a control parameter for drops of

various sizes and velocities. There is an excellent collapse of the data obtained with
various drop sizes containing various quantities of ferrofluid. The linear relation
between R and L confirms the harmonic feature of the external force. The simple
mechanical equilibrium in which the centripetal acceleration is equal to the
magnetic force would yield: R/lF¼L.

The expected proportionality is observed; however, the experimental radii are
10% larger than expected. This shift has already been observed in previous
experiments involving a Coriolis force without calibration. The origin of this shift is
discussed in Fort et al.19 In practice, being established, this master curve can be
used to obtain the calibration

ffiffiffiffiffiffiffiffiffiffiffiffi
mW=k

p
for any drop regardless of its size and the

ferrofluid content. For this reason, the rather tedious calibration does not have to
be repeated for all drops. It is sufficient to obtain the resonance frequency f0 of a
drop, to measure directly at low memory the evolution of the orbit radius with k.
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