Figure 6: DCC is negatively regulated by Satb2 and is upregulated in the Satb2−/− cortex. | Nature Communications

Figure 6: DCC is negatively regulated by Satb2 and is upregulated in the Satb2−/− cortex.

From: Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation

Figure 6

(a) Immunohistochemical staining for DCC in rostral and caudal sections shows an upregulation of DCC expression in Satb2−/− mutant brains as compared with wild-type littermates. Arrows point to the region of altered DCC expression between wild-type and Satb2−/− sections. ISH reflects an upregulation of DCC in E18.5 Satb2−/− cortex when compared with Satb2 heterozygous brains. (b) Series of images show DCC expression in E14.5 wild-type embryos in cells electroporated with either Satb2/Ski/EGFP at E11.5 or with EGFP alone at E12.5. GFP IHC delineates the region electroporated. DCC ISH demonstrates a downregulation of DCC mRNA within cells electroporated with Satb2/Ski compared with DCC expression in the contralateral hemisphere, or in the control electroporation. (c) Schematic diagram showing two putative binding MAR sites for Satb2 upstream of the DCC transcription-initiation site. ChIP from P0 cortices showed a 5.27±2.75-fold enrichment in n=6 wild-type compared with 1.72±0.015 in n=2 Satb2−/− mutants for DCC MAR1, *P-value=0.025 (Student’s t-test) and for DCC MAR2, n=7 wild-type showed a range of 0.91–10.83-fold enrichment with an average of 4.69±4.38, as compared with 1.47±0.39 in n=2 Satb2−/− mutants, P-value=0.10 (Student’s t-test). (d) Luciferase assay to demonstrate that Satb2 binds to the DCC genomic region and represses its expression. In the presence of full-length Satb2, DCC MAR1 showed a 1.5-fold decrease in luminescence ratio while DCC MAR2 did not shown any change (Student’s t-test, **P-value=0.0035). Scale bar, 100 μm, unless specified differently in the figure.

Back to article page