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The uncertainty principle enables non-classical
dynamics in an interferometer

Oscar C.0. Dahlsten'2, Andrew J.P. Garner' & Vlatko Vedral'?

The quantum uncertainty principle stipulates that when one observable is predictable there
must be some other observables that are unpredictable. The principle is viewed as holding the
key to many quantum phenomena and understanding it deeper is of great interest in the
study of the foundations of quantum theory. Here we show that apart from being restrictive,
the principle also plays a positive role as the enabler of non-classical dynamics in an inter-
ferometer. First we note that instantaneous action at a distance should not be possible. We
show that for general probabilistic theories this heavily curtails the non-classical dynamics.
We prove that there is a trade-off with the uncertainty principle that allows theories to evade
this restriction. On one extreme, non-classical theories with maximal certainty have their
non-classical dynamics absolutely restricted to only the identity operation. On the other
extreme, quantum theory minimizes certainty in return for maximal non-classical dynamics.
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he uncertainty principle has been the subject of much

discussion since the early days of quantum theory"2. It is a

quintessentially quantum phenomenon in the sense that in
classical probability theory there is no ban on systems where all
quantities can be deterministically known. A deeper under-
standing of this principle is a key aim in quantum foundations,
believed to be holding the key to the understanding of a wide host
of quantum phenomena. One important insight is that one may
formulate theories similar to quantum theory, with the crucial
difference that while there are measurements that cannot be
measured at the same time, these are not subject to an uncertainty
relation®?. These theories can, as a direct consequence of having
less (or even no) uncertainty, have more Bell violation than
possible in quantum theory and may allow for greater work
extraction than permitted by the second law of thermo-
dynamics>>~. In these cases the uncertainty principle acts as a
fundamental limiting factor.

To formulate such possibly non-quantum theories it is natural
to use the convex framework for probabilistic theories*3~13, as
essentially any experiments yielding tables of data can be
formulated in this way®®. Quantum theory is then but a special
case in a wider set of theories. One is free to add or remove
features from quantum theory and investigate the consequences.
This approach has yielded interesting results in the fields of
information theory?, statistical mechanics'! and axiomizations of
quantum theory®!>13,

Many non-classical quantum phenomena also involve the
notion of phase. The state of a quantum particle is not uniquely
specified by its probabilities of being found at different positions,
but in addition one must also assign a phase to each position.
This notion can be generalized to any probabilistic theory, and
dynamics which change these phases are termed non-classical,
One physical set-up where such phases may be observed and
manipulated is the Mach-Zehnder interferometer, as shown in
Fig. 1. (For discussions relating to interference in post-quantum
theories in a different context see refs 15-17.)

In this present research, we see that transformations in an
interferometer are heavily restricted by a principle forbidding
action at a distance. We call this principle branch locality: the
demand that if the system has no probability of being found in a
particular region (for example, branch of an interferometer), then
actions on that region cannot have an observable impact on the
system. It turns out that in the quantum case, the non-classical
transformations are entirely immune to this branch locality
restriction and that the reason for this is the uncertainty principle.
The mathematical argument is very similar to how a body sitting
on a surface with total friction may still spin around if its shape is
restricted such that it only has one point on the surface:
sometimes one restriction can reduce the impact of another. We
investigate this effect and show that it is an instance of a wider
phenomenon. Branch locality does not impose any restrictions on
non-classical dynamics in theories with something like the
uncertainty relation. On the other extreme, theories with full
certainty have any non-classical dynamics restricted to the
identity operation by branch locality. One may say that quantum
theory maximizes its non-classical dynamics at the expense of
certainty.

Results

Overview. We proceed by introducing the key concepts of the
operational framework for probabilistic theories, such as states
and transformations, as well as examples of theories, including
quantum theory and the so-called box-world theory. We do this
in the context of an interferometer, which is the physical scenario
we focus on here. Then we define branch locality in that language.
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We show how in box-world, when there is no uncertainty
between the position and other measurements, no state-changing
transformations at all can exist without violating branch locality.
We then consider why the proof does not go through in quantum
theory, showing that this is due to the uncertainty relation. We
demonstrate the general trade-off in theories between local
dynamics and the amount of uncertainty. This discussion
includes the introduction of a generalization of mutually unbiased
bases. Finally, we discuss the implications, in particular, with
regard to computation with different non classical theories.

Interferometers in the convex probabilistic framework. We
start with the simplest quantum case and then generalize it. In the
case of quantum theory one may describe an ideal Mach-Zehnder
interferometer (Fig. 1) using a single qubit, that is, a two-
dimensional Hilbert space. The state after the first beam splitter
can be expressed in the which-branch basis as /) = cyp|zup) +
Clow|Zlow). The observable giving the expected position corre-
sponds t0 Z = Zyp|2zup) (Zup| + Ziow|Ziow) (Ziow| for some labels z,,,
Ziow that we assign to the respective branches. Here it will be
convenient to label these * 1, respectively, so that the observable
is modelled by the Pauli matrix Z= |2up) (Zup| — |Ziow) {Ziow|- (The
argument also works for labellings other than *1.)

The state space of a qubit can be represented by real vectors
using the well-known Bloch sphere, see Fig. 2. Here a state is
represented by a real-valued vector of expectation values: [(X),
(Y), <Z>]T where X and Y are the other two Pauli matrices, and
() =p(g= +1) —p(g= —1). Mixtures of states correspond to
probabilistic (convex) combinations of these states, lying inside
the sphere of pure states defined by

(X)*+(Y)* +(2)’=1. (1)

The above equation constitutes an uncertainty relation;
for example if (Z) =1 one must have (X) =(Y)=0. The more
familiar formulation in terms of standard deviations, that
AXAZ > ([X,Z])] = |(Y)|, is implied by equation (1)
(recall that (Ag)* = (g) — (g)%).

The real vector used above amounts to an operational
description of the state. One may now entertain the possibility
of post-quantum states by associating them with points outside
the sphere of pure quantum states. In the present representation
of states, the state [1, 1, 1]T, for example, is not allowed in
quantum theory as it violates the uncertainty principle of
equation (1). We shall here a priori allow such states and later
rule them out. In fact, we shall only a priori assume that the
theory fits into the convex framework (essentially any experiment
yielding a data table can be described in this manner®’). A key
rule is that the state can be represented as a real vector s. A
measurement is associated with a set of outcomes {e;}, each also
represented by a real vector e; (known as an ‘effect’) such that the
probability of each outcome e; for that measurement on a state s is
given by the inner product, P(e;) =e; - s.

~ e P
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Figure 1 | The Mach-Zehnder interferometer. Branch locality, the
restriction whose consequences the uncertainty principle enables escape
from, states that if the (possibly post-quantum) particle is with probability 1
to be found in one of the branches of the interferometer (for example, up),
then operations on the other spatially disjoint branch (for example, low)
cannot change the operational state of the particle.
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Figure 2 | State spaces. The quantum state space is the (Bloch) sphere.
We also consider the possibility of other states outside the sphere. The
case of the maximal cubic state space is an instance of the so-called 'box-
world'. The branch locality restriction mandates that states on the upper or
lower plane are invariant under any transformation. The Bloch sphere,
respecting the uncertainty principle, touches the cube at only one point on
each face and is unrestricted in its dynamics, but the box-world cube is
totally frozen.

It will be crucial to our argument to consider the transforma-
tions of states. These must take all allowed states to allowed states.
They must also respect the linearity of probabilistic mixtures: for
a transformation T acting on a mixture of two states, v; and v,,
we have T(p;vy + povy) =p1T(vy) + poT(v,). These transforma-
tions are real-valued matrices acting on state vectors, up to the
subtlety that one should now add an extra component # to the
state vector corresponding to the ‘normalization’ of the state
(n=1 for normalized states) in the expectation value representa-
tion. Phase transformations have been recently defined in this
framework!4, generalizing the idea of a phase plate in quantum
theory. It was shown that a theory is classical (meaning it can be
described by classical probability theory) if and only if it has no
non-trivial phase transformations. We shall here refer to phase
transformations with respect to the position measurement as
non-classical transformations.

A theory is specified by the set of states (which implicitly
assumes a set of measurements and outcomes has been defined)
and the allowed transformations. Following Hardy® we call sets of
measurements whose statistics are sufficient to characterize any
state in the given theory ‘fiducial’. For example, the Pauli matrices
X, Y and Z are fiducial measurements for a qubit.

As well as making general statements about all theories, we
shall refer to three concrete examples. The quantum qubit case
has states represented as v=[n, (Z), (X), (Y)]T. The allowed
transformations consist of both reversible SO(3) transformations
as well as linear transformations that shrink the sphere. Second,
we shall call the case of a diagonal density matrix (such that,
(X) = (Y) =0) the classical case, modelled as v = [n, (Z), 0, 0]".
Here any matrix preserving or shrinking the line of states is
allowed. Finally, the maximal state space of all probabilistic
mixtures of the corners [n, £n, tn, ...]T is known as the state
space of a single system in the box-world. The special case of
[n, £n, £n]" is termed a (2-in 2-out) ‘gbit’4. This can (for
n=1) be visualized as the square X-Z plane slice of the cube in
Fig. 2. Gbits are currently of great interest in the context of
understanding whether there can be Popescu-Rohrlich (PR)
boxes. These are hypothetical maximally Bell-violating systems
(see ref. 3). The pure states of a gbit, the corners of the maximal
state space, are the conditional marginal states of a PR box* in the
same way that pure qubit states are related to Bell states. Thus if a
PR box can exist then so can a gbit. In box-world, the allowed
transformations on single systems are normally taken to be any
matrix that preserves or shrinks the state space (but our

arguments will apply even if one is not so permissive with the
transformations).

Branch locality restriction. Branch locality, as described in Fig. 1,
can now be formalized as an operational principle.

Definition 1: Principle of branch locality. Physical actions on one
region of space have no immediate effect on systems with
no probability of being detected in that region. For an
interferometer with many branches, we associate the effect ex
with measuring the position to be within a subset of branches /C.
Consider a state v_x with no support in X such that
P(found in ) = ex -v_x = 0. When w_g is acted on by a
transformation T, which is localized to /C, it must not change:

Txv-, =v-. (2)

In particular, if a system is in state v, associated with a single
branch b and we act on it with a transformation Ty on another
branch V' #b, then

Th/vb = Vp. (3)

We shall also impose a more obvious condition on operations
at different branches. We take the state to be described by
someone without access to outcomes of any measurements
performed on the local branches. Local transformations T acting
on the respective branches must then not alter the statistics
associated with the Z measurement. In the case of just two
branches, using the Bloch sphere representation: if the transfor-
mation takes (Z) to (Z)’ then this is simply written as

(z) =(2). (4)

In the language of ref. 14 this amounts to demanding that the
transformation is a phase transformation associated with the
position measurement Z. Moreover, we shall assume that each
disjoint branch has at least one state where, if measured in the
which-branch basis, the system will be found in that branch with
certainty.

We now show that in the extreme case of box-world where
there is no uncertainty relation between position and other
measurements, no transformations respect branch locality. Here
in the main body we give a more pedagogical argument for the
simplest case of box-world, describing a two-branch interferom-
eter with a position measurement Z and one other measurement
X defining a square state space. In the Methods we prove this
statement for a more general case of box-world, and a wider class
of related theories.

Using the notation defined above, if we take a state to be in the
upper branch with certainty, it must have the form v, =[n, n,
(X)]T (recall that n is the state normalization with n=1 for a
normalized state, and so (Z) = n for the upper branch). Consider
the effect on this state by an operation on the lower branch. From
the above considerations, equations (3) and (4) both hold.
Recalling, moreover, that the transformation is a real matrix, it
follows that:

a b ¢ n (a+b)n+c(X)
TowVp = |d e f n | =|(d+en+f(X)
L& B ] [{X) (g +h)n+i(X)
=| n ] (5)
L (X)

Consider the ranges of the different variables for gbits: n can
take values in the range 0-1, and (X) from — n to n (even when
(Z) = £ n, (X) is free to take any value in this range). As Tioy is
independent of the state it acts on, we can also consider the effect
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of Tjo, on states where (Z) takes other values in the range [ — n,
+ n], subject only to the restriction in equation (4), and the
requirement that Tj,, maps allowed states to allowed states. It
follows with a little work that

a b ¢ 1 00
Tow=|d e fl=]0 1 0]. (6)
g h i 00 1
By considering states where (Z) = — n, we can similarly show

that the only allowed transformations on the upper branch is
Typ="1. Thus we see that all dynamics violate branch locality in
the simplest case of box-world. We prove this statement for
similar interferometers with any number of branches or
measurements in the Methods.

Uncertainty principle versus branch locality. The above proof
for a gbit does not carry through in quantum theory. The proof
makes use of the fact that, for gbits, when (Z) = £ 1, (X) is still
free to take all possible values. This is a violation of the quantum
uncertainty principle and a key difference between box-world and
quantum theory. One may therefore think that the uncertainty
relation renders the restriction of branch locality trivial. We shall
prove a statement to this effect.

We begin with some definitions that we will use to state our
main result; these may also be of independent interest.

Definition 2: Fully conditionally restricted. A state space is fully
conditionally restricted by a particular measurement if fixing any
particular outcome of that measurement to occur with certainty is
sufficient to completely specify the state.

An important type of full conditional restriction is the kind
that arises when a set of measurements are subject to the type of
uncertainty relation that mutually unbiased quantum measure-
ments (such as the Pauli matrices on a qubit) obey:

Definition 3: Quantum-like uncertainty relation. A set of
measurements obey a quantum-like uncertainty relation if for
every state where one of these measurement has an outcome that
occurs with certainty, the outcomes of all other measurements in
the set are governed by uniformly random distributions.

Finally, we consider the opposite extreme to fully conditionally
restricted sets of measurements.

Definition 4: Fully independent. A state space is fully independent
of a given measurement if fixing the outcome of that measure-
ment only reduces the number of degrees of freedom in the
choice of state by the number of possible outcomes of the
measurement.

For example, consider a gbit (defined above) with two or more
fiducial measurements. If one of these fiducial measurements is
the position measurement, the other fiducial measurement(s) is
fully independent of the position measurement.

A state space can only be both fully conditionally restricted and
fully independent of the position measurement if the position
statistics uniquely specify the state. Otherwise there would be a
contradiction. This special case corresponds to classical prob-
ability theory describing the measurement outcomes (under our
assumption that each branch can be occupied with certainty). In
this case there are no non-classical dynamics to be ruled out as
there are no phase transformations!*

With these definitions, we now state our main theorem:

Theorem: If the state space is a fully restricted conditional on
the position measurement, then any non-classical transformation
can always be localized to a strict subset of branches without
violating branch locality. If the state space is instead fully

4

independent of the position measurement then no non-classical
transformations (of form T#1) can be localized to any strict
subset of branches without violating branch locality.

An intuitive understanding may be reached on why the
restriction placed by uncertainty enables non-classical dynamics:
branch locality places a joint restriction on the states and
transformations, and the restriction on transformations is
weakened by strengthening the restriction on the set of states.
A consequence of this for interferometers with state spaces fully
independent of the position measurement is that no non-classical
dynamics are possible even with access to operations on all but
one branch. In interferometers that are fully conditionally
restricted on the position measurement, such as when there is a
quantum-like uncertainty relation between the position and the
other fiducial measurements, this is not the case.

Uncertainty and mutually unbiased measurements. The main
theorem contrasts the dynamics of interferometers conditionally
restricted by the position measurement to those without restric-
tion. We now make explicit the link between conditional
restriction and uncertainty. Uncertainty, the idea that knowing
more about one measurement means that another measurement
is more random, is a special instance of a conditional restriction.
In this section we show that the quantum uncertainty relation is
the only possibly full conditional restriction for an important
class of measurements, namely a generalization of mutually
unbiased bases.

An example to bear in mind is the qubit. Instead of
representing the state in terms of the mutually unbiased Pauli
matrices, as v = gn, éZ X>r (N)]T, we could have represented it
asv = [n,(Z . In both cases, knowing the outcome
of Z with certalnty fully determmes the statistics for the other
measurements (that is, both sets of measurements are fully
conditionally restricted), but only in the former case does the set
of measurements obey the quantum-like uncertainty relation
defined above.

We can identify a specific set of measurements where full
conditional restriction requires a quantum-like uncertainty
relation: mutually unbiased measurements, a generalization of
quantum mutually unbiased bases, which we now propose.

Definition 5: Mutually unbiased measurements. A set of
measurements are mutually unbiased if for all allowed states,
the outcome probabilities of one measurement in the set can be
permuted to form another valid state without having to change
the statistics of any other measurement in the set.

When such a requirement is applied to projective measure-
ments in quantum theory, it reduces to the standard definition of
mutually unbiased bases. One sees from the definitions that any
set of mutually unbiased measurements that is fully conditionally
restricted obeys a quantum-like uncertainty relation, because only
the uniform distribution is permutation-invariant.

Discussion
In this paper, we have demonstrated the importance of the
uncertainty principle (and more generally, the conditional
restrictions) for set-ups that are subject to locality requirements.
The restriction placed by locality is so strong that without these
other types of restrictions to mitigate its effects, absolutely no
non-classical dynamics are admitted. One may say that
uncertainty - is the sacrifice that quantum theory makes to
maximize its non-classical dynamics.

One may think that the famous Aharonov-Bohm effect!® brings
branch locality into question, but in line with the standard
interpetation of that effect, we view the procedure (for example, the
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switching on or off of a solenoid) as a many-branch operation
(changing the potential on both occupied branches), so the
resulting change in the interference pattern is not a violation of
branch locality.

Our introduction and consideration of the branch locality
principle has more dramatic implications compared with
previous results concerning the restricted dynamics in box-
world*1%20, When there is no uncertainty between position and
the other measurements, we have ruled out any non-trivial
dynamics, whether reversible or not, and by non-trivial we mean
any transformation that is not the identity (whereas the word
‘trivial’ in the title of ref. 20 refers to the lack of correlating
interactions). Moreover, we show that the same restriction holds
for any interferometer in the convex framework with a state space
fully independent of the position measurement, not just box-
world.

As any computation has to be performed as an evolution of a
physical system, our results can be interpreted as saying that
computation using a (two- or multi-branch) Mach-Zehnder
interferometer is trivial when the state space is fully independent
of the position. This experimental setting stands out as being the
original setting in which quantum computation was conceived, with
the Deutsch-Jozsa algorithm?! arising naturally by considering what
one can do with a quantum system in an interferometer. In ref. 22 it
is argued that, more generally, key quantum algorithms can be
viewed as a three-stage interferometer experiment: first, prepare a
superposition of different branches; second, apply different phase
shifts to different branches; and third, bring the branches together
and make a measurement, yielding information about the phase
shifts that were done. The apparent ability to prepare and
individually address several inputs in the first and second stages is
called quantum parallelism?! (distinct from classical parallel
computation). Our result suggests that adopting an uncertainty
relation enables this parallelism, directing the search for post-
quantum theories with stronger computational power to those that
respect conditional restrictions such as the uncertainty relation, for
example, ‘systems with limited information content’>>~2>,

Methods

The general probabilistic theory framework. We first introduce the key concepts
of the operationalist approach that we will use: the framework for general prob-
abilistic theories also known as the convex framework. For a more detailed
description of the framework see, for example, refs 8,13. The framework is
operational in the sense that essentially any experiment producing a data table can
be described in this way®®. For readers familiar with quantum theory it can also be
helpful to think of the general probabilistic theory framework as a generalization of
quantum theory. In quantum theory, there is a system that is prepared in a state p,
determined by the preparation in question. There is a set of measurements one may
do, each represented by a set of projection operators {H,-}:l:I‘H (or more generally
positive-operator valued measure (POVM) elements). The operationally significant
quantities, the probabilities of given outcomes, are given by P;=Tr(pIl,). Viewed
more abstractly, the state is a vector p in the vector space of Hermitian operators. A
projection operator is also such a vector, IT say. In other words, we may pick a basis
of the vector space and write p=}",¢;e; and IT=}_v;e;. (Examples of such bases
are the Pauli operators and the pure state basis given by Hardy in ref. 8.) Note that
the coefficients of these expansions are real, so this is termed a real vector space.
Tr(pIT) is then the Hilbert-Schmidt inner product (for Hermitian matrices), which
we may write as (p, IT).

If the basis elements are chosen so that they are orthogonal with respect to
the norm, and all having the same inner product ¢ with themselves, we see that
(p, IT) = & - e where the right hand side is the standard Euclidean norm. Thus, we
may represent a quantum state, measurements on it, and the resulting probabilities
in terms of real vectors and the Euclidean norm.

In the framework, we more generally represent the state of a system s as a real
vector, and the measurement-outcome pairs, called ‘effects’ for historical reasons,
as real vectors e (for example, in the quantum case such a vector could be
associated with X= + 1, where X is the Pauli X). The probability of the outcome
associated with a given e is given by s - e. Part of the specification of a given theory
is specifying which states and effects are allowed. All convex combinations
(mixtures) of allowed states are always allowed, written as s=>_,p;s; (hence the
name ‘convex framework’). A state is said to be pure if it is not a non-trivial
mixture of other states, otherwise it is called mixed.

Transformations are represented as real matrices acting on the state vector
(following from the requirement of respecting mixtures, see for example, ref. 8).
They must take all allowed states to allowed states, but there may be further
restrictions specified for a given theory in the framework. A transformation T is
termed reversible if its inverse T~ ! is also allowed in the theory. Following ref. 14,
we shall term transformations that leave the statistics for the designated position
measurement-invariant for any state non classical dynamics.

As well as quantum theory and theories contained therein (such as classical
probability theory), one may also formulate a theory called box-world in this way.
Box-world contains all states that do not violate non-signalling (that the reduced
state of one system is invariant under operations on another)®. The standard
version of box-world assumes there are only two binary outcome measurements
under considerations. We label these X and Z and the outcomes *1 in analogy
with quantum theory. A normalized state can then, as discussed below, be
represented as s=[(X) (Z)]T and is any mixture of the four extremal states [ % 1
+1]T. The most general single system box-worlds are m-in n-out box-worlds,
which mean that one selects one measurement setting from m possible settings and
obtain n-valued outcomes. In particular, the 3-in 2-out box-world is the most
analogous to a qubit in quantum theory.

Expectation value representation. For binary measurements, we find that
focusing on the expectation values of measurements makes the notation very
simple, and easy to visualize, along the lines of the example for box-world pre-
sented in Results. In what follows, we define a representation of states in terms of
expectation values and relate it to the more standard representation in terms of
probabilities, including showing that the transformations are matrices also in the
new representation.

Consider the case of states described in terms of two fiducial measurements
with binary outcomes (recall that measurements are fiducial if their statistics are
sufficient to determine the state). Such outcomes need not be normalized, but we
require the sum of probabilities of both measurements to be equal.

Consider the ‘probability’ representation of a state*:

pX=+1)
X=-1

5= 7;;%2:_1_13 . (7)
P(Z= -1

The following is the alternative (normalization-including) ‘expectation value
representation’:

PX=4+1)-pX=-1)|=|(X)]|, (8)
p(Z=+1)-p(Z Z)

where if the state is normalized n =1, and if it is subnormalized n<1. (For a
subnormalized state we still use the notation (g):=p(g= +1) —p(g= —1),
implying the range —n<(g)<n.)

If a transformation T acts as a matrix on the state-vector in the probability
representation, as it should if it respects mixtures, is it also a matrix in the
expectation value picture? Suppose for the sake of argument that (i) there exists a
fixed matrix M such that v = Ms for all states, (i) the effective inverse matrix M ~ !
also exists satisfying M~ !Ms=s Vs. Then we can write

MTs = MTM~'Ms = MTM ~'v = v/, (9)
where v is the expectation representation state after the transformation. Thus, we
see that if the two assumptions above hold then the state transformations by a
matrix also in the expectation value picture. Moreover, these two assumptions do
hold here, with (for example):

12 1/2 0
1/2 —1/2 0
12 0 1/2
12 0 —1/2

12 1/2 12 1/2
M=|1 -1 0 0
0 0o 1 -1

M= (10)

The above argument naturally generalizes to more measurements. Note also that
we could have used a different label for the positions in the probability picture (that
is, not *1) and then mapped that into the expectation value picture using the
same matrix as above. In this sense, our argument does not depend on how we
have labelled the two positions.

Minimal representation of states. Choosing a good representation of the states
and transformations significantly aids the proof, and we shall therefore allow
ourselves to introduce a third representation, intermediate between the expectation
value and probability representations described above. We take a state in the

| 5:4592 | DOI: 10.1038/ncomms5592 | www.nature.com/naturecommunications 5

© 2014 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

probability representation and re-express it in the following way:

p(Z2=0) »(Z=0)
Z:r:naxz *max _
p(p<Xl =0) : Hem o)

p(X,=0) 7 (11)

p(X1 :fnaxm)

Xi= : -1
pre=a I R T

p(X;=0)

where in the case of Z the different numbers are arbitrary labels for the different
branches.

For example, in the case of two branches and two fiducial measurements
(labelling up =0 and low = 1), the state would be expressed as

n
p(Z=0) |. (12)
p(Xi =0)

Any state where all measurements have the same degree of normalization can
be expressed in this representation, and one sees that there exists a matrix that
maps states from the probability representation to this new one, as well as another
matrix for the other direction. Thus, by the arguments made earlier, matrices
representing transformations in the probability picture are also matrices in this
new picture. For our purposes, the advantage of this new picture over the
probability picture is that all parameters are independent, and the advantage over
the expectation picture is that it is easier to express measurements with more than
two outcomes.

V=

Proof of main theorem. We restate our main claim for reference:

Theorem: If the state space is a fully restricted conditional on the position
measurement, then any non-classical transformation can always be localized to a
strict subset of branches without violating branch locality. If the state space is
instead fully independent of the position measurement then no non-classical
transformations (of form T#1) can be localized to any strict subset of branches
without violating branch locality.

Proof: Recall that non-classical transformations are defined as phase transforms
associated with the position measurement, that is, 7’s such that

e.- (Ty) = e. -y Ve, (13)

where e, is an effect associated with an outcome of the position measurement, and
n is a valid statel®. Recall also the branch locality condition (Definition 1), that for a
transformation 7 i, acting on a subset of branches /C, any state #_x for which the
inner product with the effect associated with the position being in /C, ex satisfies,
ex - =0,

Tk = -k (14)
Let us consider first state spaces that are fully conditionally restricted with
respect to the position measurement. In a fully conditionally restricted theory there
is only one state corresponding to certain occupation of a given branch. Label the
state corresponding to branch k certainly being occupied as #,, this is the unique
state satisfying

ey = 1. (15)

Any position phase transformation 7', moreover, preserves the position
probability (equation 13). Thus, crucially,

T = my (16)

for all branches k and any phase transformation 7. This is precisely the branch
locality condition for 7 being localized to other branches than k, which means 7°
can be implemented on a strict subset of the branches without violating branch
locality. This proves the first part of the main theorem.

Now we consider state spaces that are fully independent of the position
measurement. In this case, we will apply the branch locality condition of
equation (14) where KC is any strict subset of branches, and show that this restricts
the choice of phase transformation to 7 = 1. To prove this we will show that
Tn = n holds for sufficiently many linearly independent 5 such that they span the
whole state space, implying 7 = 1. (Then a general vector v can be written in terms
of the linearly independent eigenvectors, v = > ;| cif, Tv = Zi:l aTn =
ZZ:I ity = v such that every v is left unchanged by 7 the very definition of an
identity operation.)

How many such eigenvectors are needed to span the full state space? We are
considering many-branched interferometers, in which the position measurement Z
can take two or more outcomes. We use the minimal representation of states
defined in an earlier section in the Methods titled ‘Minimal representation of
states’. Recall that each branch has at least one state where the Z statistics indicate
that, if measured, the system will be found in that branch with certainty. There can
also be additional X measurements, each with an arbitrary number (greater than
one) of possible outcomes. In such cases, where the Z measurement has N possible
outcomes the total number of degrees of freedom M from the other X
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measurements (each X; with m; different outcomes) is given by
M=) (m—1). (17)
i

The total number of degrees of freedom in the state space (and hence the
dimensions of the state vector in the minimal representation introduced above) is
d=N+ M. A transformation 7 on the state can therefore be represented by a
d x d matrix. We need d independent + 1 eigenvectors # to prove that 7 = 1. We
shall now identify these.

Consider a transformation localized to a strict subset /C of branches, of size K
where 1 <K< N. If we pick some arbitrary 5 associated with one branch not in /C,
because ex - § = 0 we will find a state that is subject to the branch locality
restriction (equation 14). Because the state space is fully independent of the Z
measurement, we can then freely alter each of the M degrees of freedom in X in
turn (without altering the Z statistics), and thus can fully span all possibilities of X
with an additional set of M linearly independent vectors. Each of these also satisfies
the branch locality restriction, giving us M+ 1 independent vectors from one
branch. Each of the remaining N — K — 1 branches not in K considered after this
will then contribute one additional linearly independent state vector subject to
branch locality. We thus find M + N — K independent state vectors associated with
a +1 eigenvalue of 7.

To identify the final K eigenvectors, we use the restrictions placed by requiring
that 7 preserves the position measurement statistics (equation 13). Let us pick K
more states with arbitrary X statistics, each with support on a different branch in
set KC, and labelled according to this choice of branch as #; to nx. These vectors
are linearly independent of each other and the other M + N — K vectors we have
found so far.

Consider one of the vectors n; with support on branch i € K. The most general
form of the action of 7 on this vector can be written as

K
0 — Ty = ZC}W’L’ + i) (18)
=

where {cm’)} are real numbers, and siZ;f is a linear combination of the +1
eigenvectors without support in K, which we found above.

Let e, be the effect associated with measuring the position to be in branch
b € K, such that e,-n;=1 when b =1, and for all other branches where b#i,
ey -1;=0. As 7 is a phase transformation, it must preserve e, - n; = e, - 7; for
every branch b. By considering e;, we can thus conclude that CE"' = 1, and similarly
considering e; for all other branches in K except i, we find that all other cj"’ =0.
We can thus re-express the action of 7 as 7 : 1; — #; + s,iy.

Consider the repeated application of 7 to the system. First note that
Tst) = st since s" is a linear combination of -+ 1 eigenvectors of 7 (the
eigenvectors found from the branch locality condition). It then follows that after n
applications of 7, 7" : ; — 1; + ns,e{. Valid transformations must take allowed
states to allowed states, and so 7"#; must be a valid state for all # (when 7"~ 'y; is
a valid state, applying T must generate another valid state). This will only be the
case for all n if 5,7 = 0 (otherwise there will eventually be a measurement outcome
with probability outside the allowed range of the theory). Thus for 7 to be an
allowed transformation, Tw; =1;, such that n; is a + 1 eigenvector of 7. An
identical argument can be made for each of the K branches in C, allowing us to find
a set of K independent + 1 eigenvectors from phase considerations.

In total, we have found d = M + N linearly independent + 1 eigenvectors of 7,
showing that 7 = 1 when considering the operations that are localized to some
subset of branches in state spaces that are fully independent of the position
measurement. This proves the second half of the theorem.

Mutually unbiased measurements. We can return to the definition of mutually
unbiased measurements (Definition 5), and discuss it in more depth. We first
consider what it means for one measurement to be unbiased with respect to
another. Consider a measurement X with effects {x;} and measurement Y with
effects {y;}. X is unbiased with respect to Y if for each permutation of the X
outcome statistics, there will be a P, such that the total set of X outcomes, {x; - P,s}
is equal to {x; - s}, and none of the Y outcomes are changed, such that y;-s=y;- Py;
for all y;, and further more P,s should be a valid state, and this should hold for all
valid states s in the theory. Note that we do not require P, to be a physically
allowed transformation—just an automorphism of the state space. The existence of
some P, is required for the measurement to be part of a mutually unbiased set
according to this definition. Furthermore, we note that the statistics associated with
other measurements than Y do not have to be preserved.

We then say a set of measurements is mutually unbiased if each measurement
in the set is unbiased with respect to every other measurement in that set. By this
definition, a set-up that can be entirely expressed by mutually unbiased
measurements is symmetric under the relabelling of any of its measurement
outcomes.

We remark that this condition places a requirement on the state space as a
whole rather than on individual states within it. A square gbit (with binary
measurements X and Z) could satisfy the above, but still admit ‘corner’ states such
as (+ 1, + 1) where both measurements are simultaneously known. This is because
(+1, —1)and (—1, +1) are also allowed states, and so this more general
definition still classifies X and Z as mutually unbiased. In contrast, X and Z in a
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‘parallelogram’ bit (such that when Z= +1 the range X =0, 1] is allowed, and
when Z= —1 the range X=[— 1, 0] is allowed; with all other allowed states
chosen to form a convex set), would not be described as mutually unbiased, as it is
not always permissible to exchange the outcomes of just the Z statistics.

A further example is the following: consider a theory with three binary *1
measurements, X, Y and Z where the outcomes of Y and Z are always the same.
Writing a general state in the (normalized) expectation value picture as (x, y, 2), if
for every state, there is another valid state of the form (x, —y, ?) and (—x, y, ?),
then X and Y form a mutually unbiased set. In the former case, ? becomes — z, and
so the ‘permutation’ on Y has also affected the Z measurement, but this is allowed
by the definition, as Z is not claimed to be within the set of mutually unbiased
measurements. This set of unbiased measurements cannot be expanded to also
include Z, as in general the state (x, — y, z) will not be valid, due to the restriction
y=z

A set of mutually unbiased measurements that are fully conditionally restricted
obey the quantum-like uncertainty relation. Consider a set of mutually unbiased
measurements {Xj, ... Xy} that are fully conditionally restricted. For such a set,
when one measurement (X;) has an outcome that occurs with certainty, there will
only be one allowed set of statistics for the rest of the measurements. From our
definition of mutually unbiased measurements, one can always find a valid state
associated with the statistics formed by any permutation of the outcomes of any of
the mutually unbiased {X}};..; measurements. However, as there is only one valid
set of statistics with the particular X; outcome, the statistics of every other X;
measurement must be unchanged under any permutation. This is only true when
all the outcome probabilities for a particular measurement have the same value,
corresponding to the uniformly random distribution. Thus, a mutually unbiased set
of measurements that are fully conditionally restricted will obey a quantum-like
uncertainty principle.

We now show how our definition reduces to the usual quantum definition of
mutually unbiased bases in the quantum case: that for two measurements on a d-
dimensional Hilbert space, X and Y, associated with d eigenstates {|x;)} and {|y;)},
respectively, X and Y are mutually unbiased if |(x;|y;)|?> = 1/d for all i and j.

Consider projective measurements X and Y with d independent outcomes. It is
possible to assume in quantum theory (for example, following a measurement) that
we are in an eigenstate with respect to one of these measurements, and therefore
states of the form p; =|x;)(x;| are allowed.

If we are in the eigenstate |x;) of X, the only allowed set of measurement
statistics for Y is given by:

P(Y = yilX =) = (5 | y) (i | ) = (| )" (19)

Replacing |x;) with |x;), there will also be only one allowed set of Y statistics,
given now by P(Y=y,|X = x,) = |(y}xc) |2 By our definition, if X and Y are
mutually unbiased measurements, the state in which we have permuted X without
altering the Y statistics must be allowed. As there is only one set of Y statistics for
the states |x;) and |xy), we therefore see that |(y;|x;)|* = (i) > = -+ = |[{yi|xa)[*
for every i.

Similar logic can be made for pure states of Y, such that |(xy;)
|(x]|y2>|2 = |<xj|yd>|2 for each j. As [(xlyi)|* = [(yilx)[% thls implies that this
inner product squared is the same for every pair |x;), |y;). For a normalized Y
measurement Y| (x;|y;)|> =1 for each pure state |x;), and we can replace the sum
with any element in the sum repeated d times, such that d|(y|x;)|*=1 for all, i, j.
Hence ‘ Vi } Xj ‘ = Lfor all i and j, recovering the quantum deﬁnmon for
projective measurements X and Y to be mutually unbiased.

|2
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